81 The Algorithm of Hierholzer INTRODUCTION 1

1. Introduction. This program was written in May 2016 by Robert Clausecker® for the Digitale
Systeme class at Humboldt University of Berlin. The program is written in the Literate Programming
idiom using the CWEB system for structured documentation of Donald E. Knuth at Stanford University.
From the source file hierholzer.w, a C program hierholzer.c is created using the CTANGLE program.
At the same time, the program can be rendered into a plain TEX document using CWEAVE.

Please be careful to compile the program as C99. Correct function cannot be ensured when compiled
in other dialects like GNU89. On a POSIX system, the invocation (1) is suitable.

c99 -o hierholzer hierholzer.c (1)

2. The program computes Eulerian paths in undirected graphs. A path, if it exists, is computed using
the algorithm of Hierholzer. The implementation admits parallel edges.

The program’s complexity is linear in the sum of the number of edges and the declared number of
vertices in the input. The dependency on the number of vertices comes from the need to create the graph
structure in memory. This term could be eliminated by choosing a more sophisticated data structure
for the graph but it does not matter except for degenerate cases where not all vertices are connected by
edges.

3. Input is provided as a list of decimal integers separated by white space. The first number is
node_count, the number of vertices in the graph. After that, the edges of the graph are described
as pairs of integers from 0 to node_count — 1.

If an Eulerian path can be found it is printed as a white space separated list of the path’s nodes
terminated with a newline. If no path was found, "-1\n" is printed instead.

4. The source code loosely follows the stylistic guidelines of the OpenBSD kernel, described in manual
page style(9). For readability, the edge, node and allocator types are emphasized and some operators
are displayed differently from how they would appear in C.
in C in CWEB
B, A!=B A+~ B,A=B,A#B
B, A >=B A<B,A>B,A<B,A>B
A.B, A->B, A[B] A.B, A~B, A[B]
A& B, A || B, A&B, AIB, A"B AABAVBA&B,A|BA®B
A << B, A> B A< B,A>B
A+B, A-B, A*B, A/B, A%YB A+BA—-BAxB A/B A%B
+A, -A, TA, A, ++A, —-A +A,—-A ~A A A —A
NULL A

A |

A<B, A>

B, A
B, A

A

B

format edge int
format node int
format wintptr_t int
format allocator int

* Robert Clausecker <fuzxxl@gmail.com>



2 PROGRAM STRUCTURE The Algorithm of Hierholzer 85

5. Program Structure. Apart from custom functions, only the C standard library is used. If an
error occurs in one of the steps, the program is terminated prematurely. Great care has been taken to
ensure that all resources are released regardless of where the program terminates.

#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>

(type declarations 6)
(the nonempty_node function 18)

extern int main(int argc, char xargv|])
{
FILE xinput_file < A;
struct allocator alloc < {0,BUCKET_SIZE, A};
struct edge path + {A,A};
node xgraph < A;
size_t node_count < 0;
int status < EXIT_FAILURE;

(parse the command line and open input_file 13)
(read the graph from input_file 14)

status <— EXIT_SUCCESS;

(decide on a vertex to start out from 17)

(find an Eulerian path 19)

(check if any edges remain 23)

(print the Eulerian path 15)

cleanup: (release all resources 12)
return (status);

}

6. The graph is represented as an adjacency list. The list is an array of vertices, each of which has a
linked list of edges. During the algorithm, edges are gradually removed from the edge lists and added to
path. The vertices are identified through their position in the graph array using the node_num macro.

#define node_num(n) n — graph

(type declarations 6) =
typedef struct edge *node;
See also sections 7 and 8.

This code is used in section 5.

7. Each edge is a pair of struct edge. Initially, partner points to the other node connected to the
edge and next points to the next edge in the edge list. When an edge is removed from the graph, one
half is inserted into the Eulerian cycle with next pointing to the next edge in the cycle. The other half
is marked as “removed” by setting partner <— A. The Eulerian path is represented by a dummy-edge
path whose next is the first edge and partner is the node the path starts out from.

A pair of struct edge are always allocated together. Some times, we need to find the other half of
a pair of struct edge. To do this we use a trick: Let s + sizeof (struct edge), then s is of the form
a-2% and 2° = s & —s. Thus in a pair of struct edge one member is aligned to 2°*! while the other is
aligned only to 2°. When we set things up such that the first member is always aligned to 2°*!, we can
find if it is the first in a pair by checking if bit b is set.

#define EDGE_ALIGNMENT sizeof (struct edge) & —sizeof (struct edge)
#define is_second_half (¢) ((uintptr_t) e & EDGE_ALIGNMENT)
#tdefine other_half (¢) is_second_half(e)?7e—1:e+1

(type declarations 6) +=
struct edge {
struct edge xnext;
node xpartner;

%



68 The Algorithm of Hierholzer MEMORY MANAGEMENT 3

8. Memory Management. In order to quickly allocate and release many edges and to ensure the
alignment constraints of struct edge we use a custom allocator alloc. The allocator allocates edges
in buckets of BUCKET_SIZE each, keeping a table of all allocated buckets in buckets. The members
bucket_count and fill keep track of how many buckets we have and how full the last bucket is, respectively.

#define BUCKET_SIZE °200000 /% 641024 entries per bucket */
(type declarations 6) +=
struct allocator {

size_t bucket_count, fill;
struct edge xxbuckets;

b

9. If the first entry in the bucket is not suitably aligned, throw it away. By construction, the second
entry will.

(allocate a new bucket 9) =

{

struct edge xxnew_buckets < realloc(alloc.buckets, ++ alloc.bucket_count x sizeof xalloc.buckets);

if (new_buckets # A) alloc.buckets < new_buckets;
else {

perror("allocation error");

goto cleanup;

if (alloc.buckets|alloc.bucket_count — 1] < malloc(BUCKET_SIZE x sizeof xxalloc.buckets),
alloc.buckets|[alloc.bucket_count — 1] = A) {
perror("allocation error");
goto cleanup;

alloc.fill + is_second_half (alloc.buckets|alloc.bucket_count — 1]) 7 1 : 0;

}

This code is used in section 10.

10. The variable epair is assumed to be declared outside. Note that alloc.fill starts out at BUCKET_SIZE
to do the right thing on the first edge we allocate.

(allocate a pair of struct edge for epair 10) =
if (alloc.fill > BUCKET_SIZE — 2) (allocate a new bucket 9)
epair < alloc.buckets|alloc.bucket_count — 1] + alloc.fill;
alloc.fill += 2;

This code is used in section 16.

11. Walk alloc.buckets, then free alloc.buckets.
(release all edges 11) =

{

size_t i;
for (i + 0; i < alloc.bucket_count; i++) free(alloc.buckets[i]);
free(alloc.buckets);

}

This code is used in section 12.

12. A label cleanup is placed just before this section so we can go there to end the program early.

(release all resources 12) =
if (input_file £ A) fclose(input_file);
(release all edges 11)
Jree(graph);

This code is used in section 5.



4 INPUT AND OUTPUT The Algorithm of Hierholzer 813

13. Input and Output. The following sections implement input parsing and formatted output.
Before input can be parsed, the input file must be opened. If no input file was provided a helpful
message is printed instead.
(parse the command line and open input_file 13) =
if (arge #£2) {
forintf (stderr, "usage: ks file\n", argv[0]);
goto cleanup;
¥
if (input_file < fopen(argv[l],"r"), input_file = A) {
perror("cannot open input file");
goto cleanup;

}

This code is used in section 5.

14. We read the input as described earlier and construct the graph in memory. The number of nodes
in the graph is stored in node_count.

(read the graph from input_file 14) =
{

size_t from, to;

int items;

if (fscanf (input_file, "%hzu\n", &node_count) # 1) {
if (ferror (input_file)) perror("input_error");
else fprintf (stderr,"input malformed\n");
goto cleanup;

if (graph «+ calloc((size_t) node_count,sizeof xgraph), graph = A) {
perror("allocation error");
goto cleanup;
}
while (items < fscanf (input_file, "%hzu %hzu\n", &from, &to), items = 2) {
if (from > node_count V to > node_count) {
forintf (stderr, "input, malformed\n");
goto cleanup;

}

(insert an edge between from and to 16)

if (items # EOF) { /* items € {0, 1} if fscanf did not parse both from and to */
forintf (stderr, "input, _malformed\n");
goto cleanup;

if (ferror(input_file)) {
perror ("input error");
goto cleanup;

}
}

This code is used in section 5.

15. To output the path we follow the next pointers of path and print the vertices we encounter.
(print the Eulerian path 15) =

{

struct edge xedg;

printf ("%tu", node_num (path.partner));
for (edg < path.next; edg # A; edg « edg-next) printf ("_%tu", node_num (edg~partner));
putchar(’\n’);

¥

This code is used in section 5.



816 The Algorithm of Hierholzer GRAPH ALGORITHMS 5

16. Graph Algorithms. Both parts of the edges are hooked into the beginnings of their edge lists.
(insert an edge between from and to 16) =

{

struct edge xepair;

(allocate a pair of struct edge for epair 10)
epair [0].next < graph[from];

epair [0].partner < graph + to;

graph[from] < epair + 0;

epair [1].next + graphltol;

epair [1].partner < graph + from;

graph[to] < epair + 1;

}

This code is used in section 14.

17. Only graphs with at most two vertices of odd degree can have Eulerian paths. The converse is not
true: A disconnected graph might not have vertices of odd degree but it cannot have an Eulerian path.

This snippet finds out how many nodes of odd degree exist, assigns path.partner to one of the two odd
nodes if exactly two nodes have odd degree or prints "-1\n" for “no Eulerian path” if more than two
nodes have odd degree. If no nodes of odd degree are found, a random node is picked for path.partner.
If no node exists, the path is empty and the program terminates prematurely.

(decide on a vertex to start out from 17) =

{

struct edge xedg;
size_t ¢, degree, odd_count < 0;
for (i < 0; ¢ < node_count; i++) {
for (degree < 0, edg < graphl[i]; edg # A; edg < edg-next) degree++;
if (degree %2 #0) {
if (++odd_count < 2) path.partner < graph + i;
else {
printf ("-1\n");
goto cleanup;
}
¥
}

if (path.partner = A) path.partner < nonempty_node (graph, node_count);
if (path.partner = A) {
printf ("\n");
goto cleanup;
}
¥

This code is used in section 5.

18. Find a node with at least one edge, return A if none exists.

(the nonempty_node function 18) =
static node xnonempty-node(node *graph,size_t node_count)

{

size_t i;
for (i < 0; ¢ < node_count; i++)

if (gmph M ?é A) return (g'r'a,ph + i);
return (A);

This code is used in section 5.



6 GRAPH ALGORITHMS The Algorithm of Hierholzer 819

19. This is the rough structure of Hierholzer’s algorithm. The algorithm alternately expands the
current path by inserting a new subcycle between chaser and chaser-next and “chases” the path towards
its end by advancing chaser until a node with edges remaining or the end is reached. When chaser reaches
the end of the path the algorithm is complete.

(find an Eulerian path 19) =

{
struct edge xchaser < &path;
do {
(greedily remove a path from chaser, at its end, follow it up with chaser-next 20)
(move chaser along the path until a vertex with edge or A is reached 22)
} while (chaser # A);
}

This code is used in section 5.

20. In this snippet a new path is assembled beginning from chaser-partner until it gets stuck some-
where. This can only happen if we are back were we came from or when this is the first path we add in
which case chaser_next is A.

( greedily remove a path from chaser, at its end, follow it up with chaser-next 20) =

struct edge xleader, xchaser_next <— chaser-next;

for (leader < chaser; xleader-partner # A; leader < leader-next) {
leader-next < xleader—partner;
(remove leader-next from the graph 21)

}

leader-next < chaser_next;

}

This code is used in section 19.

21. Unhook leader-next from its edge list and mark other_half (leader-next) as removed by setting
partner < A. No memory is deallocated. This function assumes that leader-nezt is the first edge in its
edge list which always holds when this snippet runs. The normalize macro advances n’s edge list to skip
removed edges so that n = A when the node is empty or points to an actual edge.

#define normalize(n) while (n # A A n~partner = A) n < n-next

(remove leader-next from the graph 21) =
{
struct edge xback < other_half (leader-next);
xback-partner < leader-next-next;
normalize ((xback-partner));
back-partner <+ A;
normalize ((xleader-next-partner));

}

This code is used in section 20.

22. If we reached A and have not seen a vertex with at least one edge, the path is complete.
(move chaser along the path until a vertex with edge or A is reached 22) =
while (chaser # A A xchaser-partner = A) chaser < chaser-next;

This code is used in section 19.

23. Even if all vertices have even degree the node may not have an Eulerian path if it is not connected.
In this case an Eulerian path is seemingly found but some edges remain in the graph.
(check if any edges remain 23) =
if (nonempty_node (graph, node_count) # A) {
printf ("-1\n");
goto cleanup;

}

This code is used in section 5.



§25 The Algorithm of Hierholzer REFERENCES AND INDEX 7

24. References and Index.

e Carl Hierholzer, Uber die Mdglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung
zu umfahren, in Mathematische Annalen, vol. V1., no. 1, p. 30-32, March 1873.

e The OpenBSD Kernel Developer’s Manual, Kernel source file style guide, style(9).

e ISO/IEC JTC 2/SC 22: ISO/IEC 9899:2011, “Programming Languages — C”, The International Orga-
nization for Standardization.

25. This index contains all identifiers as well as some other keywords. The numbers refer to sections,
not pages. The section with the definition of an identifier is underlined.

alloc: 5, 8, 9, 10, 11. node: 4, 5, 6, 7, 18.
allocator: 4, 5, 8. node_count: 3, 5, 14, 17, 18, 23.
argc: 5, 13. node_num: 6, 15.

argv: 5, 13. nonempty_node: 17, 18, 23.
back: 21. normalize: 21.
bucket_count: 8, 9, 10, 11. NULL: 4.

BUCKET_SIZE: 5, 8, 9, 10. odd_count: 17.

buckets: 8, 9, 10, 11. OpenBSD: 4, 24.

calloc: 14. operators: 4.

chaser: 19, 20, 22. other_half: 7, 21.
chaser_next: 20. partner: 7, 15, 16, 17, 20, 21, 22.
Clausecker, Robert: 1. path: 5, 6, 7, 15, 17, 19.
cleanup: 5,9, 12, 13, 14, 17, 23. perror: 9, 13, 14.
complexity: 2. POSIX: 1.

CWEB: 1, 4. printf: 15, 17, 23.
degree: 17. putchar: 15.

edg: 15, 17. realloc: 9.

edge: 4,5,6,7,8,9, 15, 16, 17, 19, 20, 21. status: 5.
EDGE_ALIGNMENT: 7. stderr: 13, 14.

EOF: 14. style: 4.

epair: 10, 16. style(9): 4.

Euler, Leonhard: 2. TEX: 1.

EXIT_FAILURE: 5. to: 14, 16.
EXIT_SUCCESS: 5. uintptr_t: 7.

felose: 12. vertex: 6.

ferror:  14.

fill: 8, 9, 10.

fopen: 13.

forintf: 13, 14.

free: 11, 12.

from: 14, 16.

fscanf: 14.

graph: 5, 6, 12, 14, 16, 17, 18, 23.
Hierholzer, Carl: 2, 19, 24.
w11, 17, 18.

input_file: 5, 12, 13, 14.
is_second_half: 7, 9.

ISO 9899:2011: 24.

items: 14.

Knuth, Donald Ervin: 1.

A (NULL): 4.

leader: 20, 21.

Literate Programming: 1.

main: 5.

malloc: 9.

new-buckets: 9.

next: 7, 15, 16, 17, 19, 20, 21, 22.



8 NAMES OF THE SECTIONS The Algorithm of Hierholzer

(allocate a new bucket 9) Used in section 10.

(allocate a pair of struct edge for epair 10) Used in section 16.

( check if any edges remain 23) Used in section 5.

(decide on a vertex to start out from 17) Used in section 5.

(find an Eulerian path 19) Used in section 5.

(greedily remove a path from chaser, at its end, follow it up with chaser-next 20) Used in section 19.
(insert an edge between from and to 16) Used in section 14.

{move chaser along the path until a vertex with edge or A is reached 22) Used in section 19.
(parse the command line and open input_file 13) Used in section 5.

(print the Eulerian path 15) Used in section 5.

(read the graph from input_file 14) Used in section 5.

(release all edges 11) Used in section 12.

(release all resources 12) Used in section 5.

(remove leader-next from the graph 21) Used in section 20.

(the nonempty_node function 18) Used in section 5.

(type declarations 6, 7, 8) Used in section 5.



The Algorithm of Hierholzer

Section Page

Introduction . .. ... ... 1 1
Program Structure ... ... ... ... . 5 2
Memory Management . ... ... ...ttt e 8 3
Input and Output .. ..o 13 4
Graph Algorithms . .. ... . 16 5
References and Index .. ... ... 24 7



	Introduction
	Program Structure
	Memory Management
	Input and Output
	Graph Algorithms
	References and Index
	Names of the sections
	allocate a new bucket
	allocate a pair of struct edge for epair
	check if any edges remain
	decide on a vertex to start out from
	find an Eulerian path
	greedily remove a path from chaser, at its end, follow it up with chaser->next
	insert an edge between from and to
	move chaser along the path until a vertex with edge or NULL is reached
	parse the command line and open input_file
	print the Eulerian path
	read the graph from input_file
	release all edges
	release all resources
	remove leader->next from the graph
	the nonempty_node function
	type declarations


