Resonanz-Ramanspektroskopie an Carotinoiden in Algen zur Bestimmung der Kinetik des Violaxanthinzyklus

Dipl.-Phys. Matthias Koch

22. August 2018

1 Inhaltsverzeichnis

Einführung

Ramanspektroskopie Biologische Grundlagen Spektroskopischer Zugang zum Violaxanthinzyklus

Material und Methoden

Anforderungen an die Ramanspektroskopie Anforderungen an das Modellsystem Anzucht der Algen Aufbau des Kinetikexperimentes

Signalverarbeitung

Rohdaten Chlorophyllfluoreszenz Wellenlängenkalibration Grundlinienkorrektur Ramanlinien der Carotinoide

Messergebnisse

Hell-Dunkel-Rythmen Untersuchung der Linienlagen Hauptkomponentenzerlegung Kinetik des Violaxanthinzyklus

Zusammenfassung und Ausblick

2 Einführung

Laserspektroskopischer Zugang zum Violaxanthinzyklus

- Wahl eines geeigneten Modellsystems
- Resonanz-Ramanspektroskopie
- Neuartige Signalverarbeitung

Violaxanthinzyklus?

Überlastungsschutz- und Regelmechanismus in Grünalgen und alle höheren Pflanzen: "Von der Alge bis zum Baum"

Motivation:

- Methodenentwicklung f
 ür die botanische Grundlagenforschung
- Erprobung der Stresstoleranz verschiedener Arten
- Neuer Selektionsfaktor f
 ür die Pflanzenz
 üchtung
- Schutz vor Licht- und Trockenstress im Zuge des Klimawandels

3 Eine kleine Einführung in die Ramanspektroskopie

Elektronischer Grundzustand

4 Theoretische Beschreibung des Ramaneffektes

$$I_s \sim n\omega_s^4 |\boldsymbol{\alpha} * \vec{\boldsymbol{E}}|^2 \tag{1}$$

$$\left(\alpha_{\rho\sigma}\right)_{fi} = \frac{1}{h} \sum_{r\neq i,f} \left\{ \frac{\langle f|\hat{p}_{\rho}|r\rangle \langle r|\hat{p}_{\sigma}|i\rangle}{\omega_{ri} - \omega_{1} - i\Gamma_{r}} + \frac{\langle f|\hat{p}_{\sigma}|r\rangle \langle r|\hat{p}_{\rho}|i\rangle}{\omega_{rf} + \omega_{1} + i\Gamma_{r}} \right\}$$
(2)

$$h\omega_{\rm s} = h(\omega_1 - \omega_{\rm fi}) \tag{3}$$

$$\Delta \tilde{v} := \frac{1}{\lambda_1} - \frac{1}{\lambda_s} = \frac{\omega_1}{2\pi c_0} - \frac{\omega_s}{2\pi c_0} = \frac{1}{2\pi c_0} * (\omega_1 - \omega_s) = \frac{1}{2\pi c_0} \omega_{fi} = \frac{E_{fi}}{hc_0}$$
(4)

- Is Streuintensität
- n Anzahl der schwingenden Dipole
- ω_s Frequenz des gestreuten Lichts
- α Tensor der Polarisierbarkeit
- \vec{E} Elektrischer Anregungsfeldvektor
- λ₁ Wellenlänge der Anregungsphotonen
- λ_s Wellenlänge der gestreuten Photonen
- $h\omega_1$ Energie der gestreuten Photonen

i Anfangszustand

- *f* Endzustand
- |r Zwischenzustand
- Γ_r Spektrale Halbwertsbreite
- $\hbar \omega_i$ Energie des Anfangszustandes
- $h\omega_f$ Energie des Endzustandes
- $h\omega_r$ Energie des Zwischenzustandes
- $\hbar \omega_1$ Energie der Anregungsphotonen

Quelle: Long, "The Raman Effect -

A Unified Treatment of the Theory of Raman Scattering by Molecules", 2002

5 Was sind Carotinoide?

- Farbstoffe mit vielfältigen biologischen Funktionen
- Polyen-Grundgerüst variabler Länge
- Verschiedene Endgruppen

Lycopin "Tomatenrot":

β-Carotin "Mohrrübenorange":

Quellen, abgerufen am 18. August 2018: https://de.wikipedia.org/wiki/Datei:Lycopene.svg https://de.wikipedia.org/wiki/Datei:Beta-Carotin.svg

β -*Carotin in Ethanol* 6

Resonanzkarte von β *-Carotin in Ethanol*

7

Zusammenhang zwischen Resonanz und Absorption

9 Funktionsweise des Photosystems

Quelle, abgerufen am 18. August 2018:

https://de.wikipedia.org/wiki/Datei:Lichtreaktion-z-schema.svg

10 Funktionsweise (stark vereinfacht)

Carotinoide und Chlorophylle im Photosystem absorbieren Licht \hookrightarrow Protonen + "Energieübertrager"

- Photochemische Reaktionen
- Abstrahlung als dunkelrote Chlorophyllfluoreszenz
- Abstrahlung als Wärme

pH-Wert steuert Enzyme für Umwandlung Violaxanthin \rightleftharpoons Zeaxanthin

- Violaxanthin hilft, Licht zu sammeln
- Zeaxanthin übernimmt Energie und strahlt Wärme ab

Ziel dieser Arbeit:

Zeitlichen Verlauf der Konzentrationen Violaxanthin/Zeaxanthin *in vivo* bestimmen

11 Geschichtliche Meilensteine

1931: Regelmechanismen in der Chlorophyllfluoreszenz entdeckt Kautsky, Hirsch: "Neue Versuche zur Kohlensäureassimilation"

1932: Violaxanthin & Zeaxanthin bekannt, ihre Rolle noch nicht Karrer, Helfenstein: "Plant Pigments"

1952: Zeaxanthinakkumulation bei starkem Licht und tiefen Temperaturen \hookrightarrow Carotinoide spielen vermutlich eine chemische Rolle im Metabolismus von Blättern

Moster, Quackenbush: "The effects of temperature and light on the carotenoids of seedlings grown from three corn hybrids"

1959: Violaxanthinkonzentration ändert sich mit dem Lichteinfall, Diskussion verschiedener Mechanismen

Blass et al.: "Biosynthesis and Possible Functional Relationships Among the Carotenoids; and Between Chlorophyll a and Chlorophyll b"

1967: Antheraxanthin als Zwischenschritt bestätigt

Hager: "Studies on the backward-reactions in the xanthophyll-cycle of Chlorella, Spinacia and Taxus"

12 Violaxanthin und Zeaxanthin

Quelle, abgerufen am 11. August 2018:

https://commons.wikimedia.org/wiki/File:Violaxanthin_cycle.png (modifiziert)

13 Funktionsweise des Violaxanthinzyklus

Quelle: Frank et al., "Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis", 1994

14 Resonanz von Violaxanthin und Zeaxanthin

Unterschiedliche Resonanzbedingungen:

- Violaxanthin bei 488,0 nm
- Zeaxanthin oberhalb von 500 nm: 501,7 nm, 514,5 nm und 528,7 nm

Quelle: Ruban *et al.*, "Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants: Spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes", 2001 (modifiziert)

15 Ausnutzung der Resonanz

- 45-60 Minuten Messdauer
- Mehrere Tiefpasskantenfilter
- Sehr hohe Anforderungen an die Energiekalibration

Anwendungsmöglichkeiten:

- Resonanzkarten
- Bestimmung von Resonanzprofilen
- Verfolgung der Synthese sekundärer Carotinoide

Koch *et al.*, *"In vivo* determination of carotenoid resonance excitation profiles of *Chlorella vulgaris*, *Haematococcus pluvialis*, and *Porphyridium purpureum"*, Journal of Raman Spectroscopy, 2018

16 Linienlagen von Violaxanthin und Zeaxanthin

Unterschiedliche Linienlagen in Pyridin @ 473 nm:

- Violaxanthin: 1529 cm⁻¹
- Zeaxanthin: 1522 cm⁻¹

Quelle: Ruban *et al.*, "Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants: Spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes", 2001 (modifiziert)

Material und Methoden

18 Anforderungen an die Ramanspektroskopie

- Resonanzanregung
 - Blauer Laser
- Langzeitmessungen von mehreren Tagen
 - Energiestabilisation des Lasers
- Linienlagenverschiebung von 1522 cm⁻¹ bis 1529 cm⁻¹ (182 pm @ 473 nm)
 - Frequenzstabilisation des Lasers
 - Linienbreite des Lasers < 1 cm⁻¹ (26 pm)
 - Offsetkorrektur des Spektrometers besser als 1 cm⁻¹ (26 pm)
 - Langzeitstabilität des Spektrometers

19 Geräte für die Ramanspektroskopie

- Blauer Dauerstrichlaser, 473 nm, 50 mW, 12 pm, energie- und frequenzstabilisiert
- Faserbündel
- Tiefpasskantenfilter 473 nm
- \blacktriangleright Spektrometer, \sim 0,8 $\rm cm^{-1}/Pixel$ oder \sim 0,3 $\rm cm^{-1}/Pixel$ je nach Gitter

Neonglimmlampen zur Kalibration 20

Wellenlänge [nm]

21 Anforderungen an das Modellsystem

- Violaxanthinzyklus
- Viele Individuen \rightarrow Klein
- Leicht zu kultivieren
- Schnelle Vermehrung

22 Die Alge Dunaliella salina

- Göttinger Sammlung von Algenkulturen (SAG 184.80)
- Besitzt als Grünalge den Violaxanthinzyklus
- ► Extrem ausgeprägte Salztoleranz → Erleichtert die Kulturführung
- Synthetisiert unter Stress β-Carotin als sekundäres Carotinoid

Quelle, abgerufen am 11. August 2018:

https://sagdb.uni-goettingen.de/detailedList.php?str_number=184.80 (modifiziert)

23 Anzuchtbedingungen

- Temperatur 22°C
- Lichtintensität 2,5 µmol*s⁻¹*m⁻² photosynthetisch aktiver Strahlung (400 nm - 700 nm)
- Kontinuierliche, schonende Belüftung und Umwälzung
- Definierte N\u00e4hrstoffzusammensetzung

24 Algenreaktor

- Betrieb mit Pressluft
- Gaswaschflasche zum Befeuchten der Luft
- Sterilfilter zur Vermeidung von Kontaminationen
- Schonende Umwälzung der Kultur nach dem Mammutpumpenprinzip

25 Details des Anzuchtgefäßes

26 Gesamtschema des Experimentes

- 1: Blauer Laser
- 2: Faserbündel
- 3: Tiefpasskantenfilter
- 4: Spektrometer
- 5: Kamera

- 6: Glaskolben
- 7: Algenkultur
- 8: LED-Scheinwerfer
- 9: Neonglimmlampen
- 10: Magnetrührer

27 Aufbau des Experimentes

- Faserbündel für die Ramanspektroskopie
- 250 ml Erlenmeyerkolben mit 200 ml Algenkultur
- Plexiglasplatte mit Neonglimmlampen f
 ür die Wellenl
 ängenkalibration
- Magnetrührer

28 Steuerung des Experimentes

29 Stressbeleuchtung

Rote und blaue Hochleistungsleuchtdioden für 3000 $\mu mol * s^{-1} * m^{-2}$ photosynthetisch aktiver Strahlung an der Oberfläche des Erlenmeyerkolbens

Ohne Stressbeleuchtung:

Mit roter Stressbeleuchtung:

Signalverarbeitung

31 Ungefiltertes Rohspektrum

Rohspektrum mit Rayleighfilter

32

33 Chlorophyllfluoreszenz

Kalibration des Offsets mit Neonlinien 34

Wellenlänge [nm]

Auf die Neonlinien kalibriert 35

Wellenlänge [nm]

36 Wellenzahlskala und die Wasserramanlinie

37 Kompliziert geformte Grundlinie

38 Iterative morphologische Grundlinienkorrektur

Koch *et al.*, "Iterative morphological and mollifier-based baseline correction for Raman spectra", Journal of Raman Spectroscopy, 2017

39 Iterationsschritte der Grundlinienkorrektur

40 Iterationsschritte der Grundlinienkorrektur

41 Obertöne und Kombinationsbanden

42 Finales Spektrum

Messergebnisse

44 Parameterstudie: Hell-Dunkel-Rythmen

Stressbeleuchtung	Farbe	Dunkelphase
42 min	Blau	459 min
42 min	Blau	230 min
73 min (42s an, 21s aus)	Rot	459 min

45 Resultierende Ramanspektren

46 Lage der Ramanlinien im Laufe der Zeit

47 Einführung in die Hauptkomponentenzerlegung

"Hauptachsentranformation mit Rauschen"

$$\mathsf{D} = \mathsf{C}\mathsf{S}^\mathsf{T} + \mathsf{E} \tag{5}$$

- D Gemessene Spektren
- C Konzentrationen der Komponenten
- T Transposition
- *S* Spektren der Komponenten
- E Nicht als Linearkombination darstellbare Anteile
- Näherungsverfahren
- Benötigt viel mehr Spektren als Komponenten
- Mittelt Rauschen aus
- Zahl der Komponenten wird vorgegeben
- Sehr objektiv

48 Hauptkomponentenzerlegung ohne Rauschen

Relative Wellenzahl [cm⁻¹]

49 Hauptkomponentenzerlegung mit Rauschen

Zerlegung einer Linienverschiebung 50

51 Zerlegung einer Linienverschiebung

52 Hauptkomponentenzerlegung: Spektren

Koch *et al.*, "Violaxanthin cycle kinetics analysed in vivo with resonance Raman spectroscopy", Journal of Raman Spectroscopy, 2017

53 Hauptkomponentenzerlegung: Details der Spektren

Koch *et al.*, "Violaxanthin cycle kinetics analysed in vivo with resonance Raman spectroscopy", Journal of Raman Spectroscopy, 2017

54 Hauptkomponentenzerlegung: Zeitlicher Verlauf

Koch *et al.*, "Violaxanthin cycle kinetics analysed in vivo with resonance Raman spectroscopy", Journal of Raman Spectroscopy, 2017

55 Tag-Nacht: Die Hell-Dunkel-Übergänge

Koch *et al.*, "Violaxanthin cycle kinetics analysed in vivo with resonance Raman spectroscopy", Journal of Raman Spectroscopy, 2017

56 Nacht-Tag: Die Dunkel-Hell-Übergänge

Koch *et al.*, "Violaxanthin cycle kinetics analysed in vivo with resonance Raman spectroscopy", Journal of Raman Spectroscopy, 2017

Jahns: Violaxanthinzyklus in Erbsenpflanzen 57

Ouellen:

Jahns, "The Xanthophyll Cycle in Intermittent Light-Grown Pea Plants: Possible Functions of Chlorophyll a/b-Binding Proteins", 1995 (modifiziert)

https://de.wikipedia.org/wiki/Datei:Doperwt rijserwt peulen Pisum sativum.jpg

(18. August 2018)

58 Latowski et al.: Dunkel-Hell-Übergang d. Wasserlinse

Quellen:

Latowski *et al.*, "Effect of the Temperature on Violaxanthin De-Epoxidation: Comparison of the In Vivo and Model Systems", 2003 (modifiziert)

https://de.wikipedia.org/wiki/Datei:LemnaTrisulca.jpg (18. August 2018)

Zusammenfassung und Ausblick

60 Zusammenfassung

Experimentelle Grundlagen zur Messung der Kinetik des Violaxanthinzyklus *in vivo* erfolgreich gelegt.

- In vivo Messung, keine destruktive Probenpräparation nötig
- Tausende anstelle einiger weniger mit Flüssigchromatographie bestimmten Messpunkte
- Zeitkonstante des Hell-Dunkel-Überganges je nach experimentellen Bedingungen zwischen 39±8 und 46±4 Minuten
- ► Zeitkonstante des Dunkel-Hell-Überganges: 3,2±1,0 Minuten
- "Violaxanthin cycle kinetics analysed in vivo with resonance Raman spectroscopy", Journal of Raman Spectroscopy, 2017

61 Ausblick

Weitere Einflussfaktoren berücksichtigen:

- "Einschwingvorgänge"
- Hell-Dunkel-Rythmen
- Intensität und Wellenlänge der Stressbeleuchtung
- Anzuchtbedingungen

Anwendungen:

- Selektionsfaktor f
 ür die Pflanzenz
 üchtung
- Erprobung der Stresstoleranz verschiedener Arten
- Schutz vor Licht- und Trockenstress im Zuge des Klimawandels

62 Vielen Dank für Ihre Aufmerksamkeit!

