
Instructions for objconv
A cross-platform utility for converting and modifying

object files and function library files

By Agner Fog
© 2007. GNU General Public License.

Version 0.91 beta.

Contents
1 Introduction ... 1
2 Command line syntax.. 2
3 Converting file format .. 3
4 Modifying symbols... 5
5 Managing libraries ... 6
6 Warning and error control.. 8
7 Using a response file... 8
8 Source code.. 9
9 File list... 9

1 Introduction
Objconv is a utility for converting and modifying object files (*.obj, *.o) and static linking
library files (*.lib, *.a) for x86 platforms, including 32 and 64 bit Windows, Linux, BSD and
Intel-based Mac. Objconv can convert object and library files between the COFF format
used in Windows systems, the ELF format used in Linux and BSD and the Mach-O format
used in Intel-based Macintosh computers. Support for OMF format is not included in the
beta version (0.91), but may be added later. The main purpose of objconv is for cross-
platform development of function libraries from assembly source code.

Objconv can also be used for renaming or modifying symbols in object and library files, for
dumping files, and as a cross-platform library manager.

A library in this context means a collection of object files. This is called a static linking library
file (*.lib) in Windows terminology or an archive (*.a) in Unix terminology. I prefer to use the
name library because an archive can also mean a .zip or .tar file.

Objconv cannot modify or convert dynamic link libraries (*.dll), shared object files (*.so) or
executable files, but it may be able to dump such files.

Objconv is an open source program under the GNU General Public License, as defined in
www.gnu.org/copyleft/gpl.html.

The following table summarizes the type of conversions that objconv can do:

File
format

Word
size

Extension Operating
system

Convert
from

Convert
to

Modify Dump Disas-
semble

COFF 32 .obj, .lib Windows x x x x -
COFF 64 .obj, .lib Windows x x x x -
OMF 16 .obj, .lib Windows - - - - -
OMF 32 .obj, .lib Windows - - - - -
ELF 32 .o, .a Linux, BSD x x x x -
ELF 64 .o, .a Linux, BSD x x x x -
Mach-O 32 .o, .a Mac OS X - x - x -

http://www.gnu.org/copyleft/gpl.html

 2

COFF format is also called PE. Support for OMF and Mach-O formats and disassembly may
be added in future versions.

2 Command line syntax
Objconv is executed from a command line or a make utility. The syntax is as follows

objconv options inputfile [outputfile]

Options start with a dash -. A slash / is accepted instead of - when running under
Windows. Options must be separated by spaces. The order of the options is arbitrary, but all
options must come before inputfile. The name of the output file must be different from
the input file, except when adding object files to a library file. The option letters are case
insensitive, file names and symbol names are case sensitive.

The return value from objconv is zero on success, and equal to the highest error number in
case of error. This will stop a make utility in case of error messages, but not in case of
warning messages.

Summary of options

-fXXX Desired output format. XXX = COFF, ELF or MAC. PE is accepted as synonym
 for COFF. The word size, 32 or 64, may be appended to the name,
 e.g. ELF64. The output format must be specified, except for the dump
 command -fd, which has no output.

-dXXX Dump contents of file. XXX can be one or more of the following:

f: file header, h: section headers, s: symbol table,
r: relocation table, n: string table (all names).

-ds Strip debug information from file. (Default when converting to different

format).

-dp Preserve debug information, even if it is incompatible with the target system.

-xs Strip exception handling information and other incompatible info. (Default
 when converting to different format).

-xp Preserve exception handling information and other incompatible info.

-nu Change leading underscores on symbol names to the default for the target
 system.

-nu- Remove leading underscores from symbol names.

-nu+ Add leading underscores to symbol names.

-au- Remove leading underscores from public symbol names and keep old names

as aliases.

-au+ Add leading underscores to public symbol names and keep old names as

aliases.

-nd Replace leading dot or underscore in nonstandard section names with the
 default for the target system.

 3

-nr:N1:N2 Replace name N1 with N2. N1 may be a symbol name, section name
 or library member name.

-ar:N1:N2 Give public symbol N1 an alias name N2. The same symbol will be
 accessible as N1 as well as N2.

-nw:N1 Make public symbol N1 weak. Only possible for ELF files.

-nl:N1 Make public or external symbol N1 local (invisible).

-lx Extract all members from library inputfile to object files.

-lx:N1:N2 Extract member N1 from library and save it as object file N2. The name
 of the object file will be N1 if N2 is omitted. May use | instead of :.

-la:N1:N2 Add object file N1 to library and give it member name N2. The member
 name will be N1 if N2 is omitted. May use | instead of :.

-ld:N1 Delete member N1 from library.

-v0 Silent operation. No output to console other than warning and error

messages.

-v1 Verbose. Output basic information about file names and types (Default).

-v2 More verbose. Tell about conversions and library operations.

-wdXXX Disable warning number XXX.

-weXXX Treat warning number XXX as an error.

-edXXX Disable error message number XXX.

-ewXXX Treat error number XXX as warning.

-h Help. Print list of options.

@RFILE Read additional options from response file RFILE.

3 Converting file format
An object file can be converted from one format to another by specifying the desired format
for the output file. The format of the input file is detected automatically. For example, to
convert the 32-bit COFF file file1.obj to ELF:

objconv -felf32 file1.obj file1.o

The name of the output file will be generated, if it is not specified, by replacing the extension
of the input file with the default extension for the target format. The name of the output file
must be different from the input file.

A library is converted in the same way:

objconv -felf32 file1.lib file1.a

 4

The output file will always have the same word size as the input file. It is not possible to
change the word size.

You may use the -nu option to add or remove leading underscores on symbol names.

Debug information and exception handling information is removed from the file, by default, if
the format of the output file is different from the input file. It is recommended to remove this
information because it will be incompatible with the target system. Objconv does not include
a facility for converting this information to make it compatible. You may get an unresolved
reference named __gxx_personality_v0 when converting from Gnu systems to
another format if the exception handling information is not removed.

The input file should preferably be generated from assembly code with careful observation
of the calling conventions of the target system. Compiler-generated code should not be
converted but recompiled on the target platform. If the source code is not available then it
may be necessary to disassemble the object file, fix any incompatibilities in the assembly
code, and then assemble again. Linux, BSD and Mac systems are very similar and may be
compatible with each other without recompiling.

The reasons why conversion of compiler-generated code to a different format may not work
can be summarized as follows:

Reasons why conversion of compiler-generated code may fail
Calling conventions
in 64-bit mode

The calling conventions in 64-bit Windows and 64-bit Linux are very
different. Functions with integer parameters will not work. Windows
functions may use a shadow space not available in Linux. Linux
functions may use a red zone not available in Windows.

Calling conventions
in 32-bit mode

Most compilers have the same calling conventions in 32-bit mode,
except for class member functions in Microsoft-compatible compilers.
Use the keyword __cdecl on member function declarations on
Microsoft-compatible compilers to force a compatible calling convention,
or use friend functions instead of member functions.

Register usage
conventions in 64-bit
mode

Linux functions may modify registers RSI, RDI and XMM6 - XMM15,
which must be preserved by Windows functions.

Register usage
conventions in 32-bit
mode

The register usage conventions are the same in all 32-bit systems
except for Watcom compilers.

Mangling of function
names

Different compilers use different name mangling schemes. Use extern
"C" on all function declarations to avoid name mangling. If this is not
possible then you may have to change the mangled name by using the
-nr option in objconv.

Leading
underscores on
function names

Use the -nu option on objconv to add or remove leading underscores
when converting 32-bit files.

Initialization and
termination code

Initialization and termination code is used for calling the constructors
and destructors of global objects and for initializing function libraries.
This code is not compatible between different systems.

Exception handling
and stack unwinding
information

This information is not compatible between different systems. Do not
rely on structured exception handling.

Virtual tables and
runtime type
identification

Do not use virtual member functions or runtime type identification.

Communal functions Objconv does not include a feature for converting communal

 5

and data (coalesced) data. Do not use function-level linking (/Gy) on Microsoft
compilers or -ffunction-sections on Gnu compilers.

Compiler-specific
library calls

Most compilers can generate calls to library functions that are specific
to that particular compiler. It may be necessary to convert the library
function as well or make a replacement for this function.

Calls to operating
system

Operating system calls are not compatible among systems.

Position-
independent code

The Mac OS X operating system requires position-independent code if
you are making shared objects. Other systems may not be able to make
position-independent code. Use static linking instead of dynamic linking
when using converted object files on Mac systems. See macpic.asm
for instructions on how to make position-independent code in MASM.

More details about incompatibilities between different platforms are documented in my
manual number 5: "Calling conventions for different C++ compilers and operating systems".
(www.agner.org/optimize).

My manual number 2: "Optimizing subroutines in assembly language" explains how to make
function libraries that are compatible with multiple platforms. (www.agner.org/optimize).

4 Modifying symbols
It is possible to modify the names of public and external symbols in object files and libraries
in order to prevent name clashes, to fix problems with different name mangling systems,
etc.

Note that symbol names must be specified in the way they are represented in object files,
possibly including underscores and name mangling information. Use the dump option to see
the mangled symbol names.

To change the symbol name name1 to name2 in COFF file file1.obj:

objconv -fcoff -nr:name1:name2 file1.obj file2.obj

The modified object file will be file2.obj. Objconv will replace name1 with name2
wherever it occurs in public, external and local symbols, as well as section names and
library member names. All names are case sensitive.

It is possible to give a public symbol more than one name. This can be useful for the
purpose of supporting multiple name mangling schemes with the same object or library file.
To give the function named function1 the alias function2:

objconv -fcoff -na:function1:function2 file1.obj file2.obj

No more than one operation can be specified for the same symbol name. For example, you
cannot remove an underscore from a name and make an alias at the same time. You have
to run objconv twice to so. For example, to convert COFF file file1.obj to ELF, remove
underscores, and make an alias:

objconv -felf -nu file1.obj file1.o
objconv -felf -na:function1:function2 file1.o file2.o

Likewise, you have to run objcopy twice to make two aliases to the same symbol.

http://www.agner.org/optimize
http://www.agner.org/optimize

 6

It is possible to make a public symbol weak in ELF files. A weak symbol has low priority so
that it will not be used if another public symbol with the same name is defined elsewhere.
This can be useful for preventing name clashes if there is a risk that the same function is
supplied in more than one library. Note that only the ELF file format allows this feature. To
make public symbol function1 weak in ELF file file1.o:

objconv -felf -nw:function1 file1.o file2.o

COFF and OMF files have a different feature called weak external symbols. This is not
supported by objconv.

Objconv can hide public symbols by making them local. A public symbol can be made local
if you want to prevent name clashes or make sure that the symbol is never used by any
other modules. To hide symbol DontUseMe in COFF file file1.obj:

objconv -fcoff -nl:DontUseMe file1.obj file2.obj

It is also possible to hide external symbols. This can be used for preventing link errors with
unresolved externals. The hidden external symbol will not be relocated. Note that it is
dangerous to hide an external symbol unless you are certain that the symbol is never used.
Any attempt to access the hidden symbol from a function in the same module will result in a
serious runtime error.

All symbol modification options can be applied to libraries as well as to object files.

5 Managing libraries
A function library (archive) is a collection of object files. Each member (object file) in the
library has a name which, by default, is the same as the name of the original object file.
Objconv will always modify the member names, if necessary, to meet the following
restrictions:

• Any path is removed from the member name.

• The member name (including extension) cannot be longer than 15 characters. This
is for the sake of compatibility between different systems that differ in the way longer
names are stored. The name is truncated if necessary.

• The member names must be different. Names that become identical after truncation
will be modified to make them different.

• The member name must end in .obj for COFF and OMF files, or .o for ELF and
Mach-O files. The extension is changed or added if necessary.

The libraries contain a symbol index in order to make it easier for linkers to find a particular
symbol. Objconv will always remake the symbol index whenever a library file is modified.

Objconv can add, remove, replace, extract, modify or dump library members.

Rebuilding a library
To remove any path from member names and rebuild the symbol table in library
mylib.lib:

objconv -fcoff mylib.lib mylib2.lib

 7

Converting a library
To convert library mylib.lib from COFF to ELF format:

objconv -felf mylib.lib mylib.a

Building a library or adding members to a library
To add ELF object files file1.o and file2.o to library mylib.a:

objconv -felf -la:file1.o -la:file2.o mylib.a

or alternatively:

objconv -felf -lib mylib.a file1.o file2.o

The -lib option is intended for make utilities that produce a list of object files separated by
spaces. The library mylib.a will be created if it doesn't exist.

If you want to preserve the original library without the additions then write:

objconv -felf -la:file1.o -la:file2.o mylib.a mylib2.a

Any members of the old library with the same names as the added object files will be
replaced. Members with different names will be preserved in the library.

Any specified options for format conversion or symbol modification will be applied to the
added members, but not to the old members of the library.

Removing members from a library
To delete member file1.o from library mylib.a:

objconv -felf -ld:file1.o mylib.a mylib2.a

Extracting members from a library
To extract object file file1.o from library mylib.a:

objconv -felf -lx:file1.o mylib.a

To extract all object files from library mylib.a:

objconv -felf -lx mylib.a

Any specified options for format conversion or symbol modification will be applied to the
extracted members, but the library itself will be unchanged.

No more than one option can be specified for each library member. For example, you can't
extract and delete the same member in one operation.

Modifying library members
To rename library member file1.o to file2.o in library mylib.a:

 8

objconv -felf -nr:file1.o:file2.o mylib.a mylib2.a

To rename symbol function1 to function2 in library mylib.a:

objconv -felf -nr:function1.o:function2.o mylib.a mylib2.a

Any symbol modification option specified will be applied to all library members that have a
symbol with that name.

Dumping library contents
To show all members and their public symbol names in library mylib.a:

objconv -fd mylib.a

Note that the member names shown are the names before conversion. All other commands
use the member names after any path has been removed and the length has been limited to
15 characters.

To show the complete symbol list of member file1.o in library mylib.a:

objconv -fdhs -lx:file1.o mylib.a

6 Warning and error control
Objconv can be called from a make utility. The make process will stop in case of an error
message but not in case of warning messages. It is possible to disable specific error
messages, to convert errors to warnings and to convert warnings to errors.

It is possible to disable error number 2005 is you want the input file and output file to have
the same name. It is possible to disable error number 2505 if you want to mix object files
with different word sizes in the same library.

7 Using a response file
Command line parameters can be stored in a response file. This can be useful if the
command line is long and complicated. Just write @ followed by the name of the response
file. The contents of the response file will be inserted at the place of its name.

Response files can be nested, and there can be a maximum of ten response files.

Response files can have multiple lines and can contain comments. A comment starts with #
or // and ends with a line break.

8 Alternative tools
There are certain alternative tools that can convert object file formats. The Microsoft linker
and library manager can convert from 32-bit OMF to COFF. Some compilers that use the
OMF format include a utility for converting 32-bit COFF to OMF. The Gnu objcopy utility
can convert between various object file formats. The objcopy utility can be recompiled to
support the file formats you need.

 9

9 Source code
The source code can be used for rebuilding the executable for a particular platform and for
modifying the objconv program. The code is in C++ language and can be compiled with
almost any modern C++ compiler that supports 64-bit integers.

Project files for Microsoft and Gnu compilers are included. To build objconv with another
compiler, just make a project that includes all the .cpp files and compile for console mode.

10 File list
objconv.exe Executable for Windows
instructions.pdf This file

	Introduction
	Command line syntax
	Converting file format
	Modifying symbols
	Managing libraries
	Warning and error control
	Using a response file
	Alternative tools
	Source code
	File list

