
Instructions for objconv

A utility for cross-platform development of function libraries, for converting
and modifying object files and for dumping and disassembling object and

executable files.

By Agner Fog. © 2007. GNU General Public License.
Version 0.95 Beta.

Contents
1 Introduction ... 2

1.1 File types .. 2
2 Command line syntax.. 3
3 Warning and error control.. 5
4 Converting file formats .. 5
5 Modifying symbols... 6
6 Managing libraries ... 8
7 Dumping files .. 10
8 Disassembling files.. 10

8.1 How to interpret the disassembly .. 11
8.2 Checking the syntax of machine code... 13

9 Frequently asked questions... 13
9.1 Why is there no graphical user interface? ... 13
9.2 What kind of files can objconv convert? .. 13
9.3 Can I build a function library that works in all operating systems?............................. 14
9.4 Can I convert an executable file from Windows to Linux? ... 14
9.5 Can I convert a dynamic link library to another system? ... 14
9.6 Why can't I convert an export library? ... 14
9.7 Can I convert a static library to a dynamic library? .. 14
9.8 Can I convert from a dynamic library to a static library? .. 14
9.9 Can I convert from 32 bit code to 64 bit code? .. 14
9.10 Can I convert a Windows function library to use it under other systems? 14
9.11 I have problems porting my Windows application to Linux or Mac because the Gnu
compiler has a strict syntax. Can I convert the compiled Windows code instead?........... 14
9.12 Is it possible to convert mangled function names? .. 15
9.13 Is it possible to convert function calling conventions automatically?........................ 15
9.14 Does the disassembler have an interactive feature?... 15
9.15 Is it possible to disassemble an executable file to modify it and then assemble it
again?... 15
9.16 Is it possible to disassemble an object file and fix all compatibility problems
manually? ... 15
9.17 Is it possible to reconstruct C++ code from a disassembly? 15
9.18 Why do I get error messages in the disassembly file?... 16
9.19 Can I disassemble byte code? .. 16
9.20 I have problems assembling the output of the disassembler 16
9.21 Why does the disassembler use MASM syntax?... 16
9.22 Why does my disassembly take so long time? .. 17
9.23 How can I save the output of the dump screen to a file? ... 17
9.24 Can you help me with my programming problems?... 17
9.25 Are there any alternatives to objconv? .. 17

10 Source code .. 17
10.1 Explanation of the objconv source code.. 18
10.2 How to add support for new file formats .. 19
10.3 How to add features to the disassembler .. 20
10.4 File list .. 20
10.5 Class list ... 21

11 Legal notice... 24

 2

1 Introduction
Objconv is a utility for facilitating cross-platform development of function libraries, for
converting and disassembling object files, and for other development purposes. The latest
version of objconv is available at www.agner.org/optimize.

Objconv can perform the following tasks:

• Convert object files between different formats used on different x86 and x86-64
platforms.

• Change symbol names in object files.

• Build, manage and convert static link libraries in various formats for different x86 and
x86-64 platforms.

• Dump file headers and other contents of object files, static and dynamic library files,
and executable files.

• Disassemble object files and executable files and check instruction code syntax.

The following platforms are supported:

• Windows, 32 and 64 bit x86.

• Linux, 32 and 64 bit x86.

• BSD, 32 and 64 bit x86.

• Mac OS X, Intel based, 32 bit

The source code for objconv can be compiled and run under any of these platforms. The
program is compatible with standard make utilities.

Note that objconv is intended for programming experts. It is far from fool proof, and you
need to have a very good understanding of how compilers and linkers work in order to use
this program. Please do not send your programming questions to me - you will not get any
answer.

1.1 File types
An executable file is a file containing machine code that can be executed. This can be a
program file or a dynamic link library, also called shared object. The name shared object is
used only in Unix-like systems, such as Linux, BSD and Mac OS X.

An object file is an intermediate file used in the building of an executable file. It contains part
of the code that will make up the final executable file. An object file usually contains cross-
references to functions in other object files.

A static link library means a collection of object files. This is called a static linking library file
in Windows terminology or an archive in Unix terminology. I prefer to use the name library
because an archive can also mean a .zip or .tar file.

Objconv cannot modify or convert executable files, including dynamic link libraries or shared
objects, but it can dump or disassemble such files.

http://www.agner.org/optimize

 3

The following table summarizes the type of operations that objconv can do on various file
types:

File type and
format

Word
size, bits

Exten-
sion

Operating
system

Convert
from

Convert
to

Modify Dump Disas-
semble

Object file
COFF/PE

32, 64 .obj Windows x x x x x

Library file
COFF/PE

32, 64 .lib Windows x x x x x

DLL, driver
COFF/PE

32, 64 .dll, .sys Windows - - - x x

Executable file
COFF/PE

32, 64 .exe Windows - - - x x

Object file
OMF

16 .obj DOS, Win-
dows 3.x

- - - x x

Object file
OMF

32 .obj Windows x x x x x

Library file
OMF

16 .lib DOS, Win-
dows 3.x

- - x x x

Library file
OMF

32 .lib Windows x x x x x

Executable file
16 bit

16 .exe DOS, Win-
dows 3.x

- - - - -

Object file
ELF

32, 64 .o Linux, BSD x x x x x

Library file
ELF

32, 64 .a Linux, BSD x x x x x

Shared Object
ELF

32, 64 .so Linux, BSD - - - x x

Executable file
ELF

32, 64 Linux, BSD - - - x x

Object file
Mach-O

32 .o Mac OS X - x - x x

Library file
Mach-O

32 .a Mac OS X - x x x x

Shared object
Mach-O

32 .so Mac OS X - - - x x

Executable file
Mach-O

32 Mac OS X - - - x x

Universal
binary

32, 64 Mac OS X - - - x x

2 Command line syntax
If you want to run objconv under Linux, BSD or Mac (Intel based), then you have to first
build the executable. Unpack source.zip to a temporary directory and run the build script
build.sh. To run objconv under Windows, you can just use the executable
objconv.exe.

Objconv is executed from a command line or from a make utility. The syntax is as follows:

objconv options inputfile [outputfile]

Options start with a dash -. A slash / is accepted instead of - when running under
Windows. Options must be separated by spaces. The order of the options is arbitrary, but all
options must come before inputfile. The name of the output file must be different from

 4

the input file, except when adding object files to a library file. The option letters are case
insensitive, file names and symbol names are case sensitive.

The return value from objconv is zero on success, and equal to the highest error number in
case of error. This will stop a make utility in case of error messages, but not in case of
warning messages.

Summary of options

-fXXX Convert file to format XXX. XXX = COFF, OMF, ELF, MAC, or ASM.

 PE is accepted as a synonym for COFF. The word size, 32 or 64, may be
 appended to the name, e.g. ELF64. The output format must be specified,
 except for the dump command -fd, which has no output file.

-fdXXX Dump contents of file. XXX can be one or more of the following:

f: file header, h: section headers, s: symbol table,
r: relocation table, n: string table (all names).

-ds Strip debug information from file. (Default when converting to a different

format).

-dp Preserve debug information, even if it is incompatible with the target system.

-xs Strip exception handling information and other incompatible info. (Default
 when converting to a different format).

-xp Preserve exception handling information and other incompatible info.

-nu Change leading underscores on symbol names to the default for the target
 system.

-nu- Remove leading underscores from symbol names.

-nu+ Add leading underscores to symbol names.

-au- Remove leading underscores from public symbol names and keep old names

as aliases.

-au+ Add leading underscores to public symbol names and keep old names as

aliases.

-nd Replace leading dot or underscore in nonstandard section names with the
 default for the target system.

-nr:N1:N2 Replace name N1 with N2. N1 may be a symbol name, section name
 or library member name.

-ar:N1:N2 Give public symbol N1 an alias name N2. The same symbol will be
 accessible as N1 as well as N2.

-nw:N1 Make public symbol N1 weak. Only possible for ELF files.

-nl:N1 Make public or external symbol N1 local (invisible).

-lx Extract all members from library inputfile to object files.

 5

-lx:N1:N2 Extract member N1 from library and save it as object file N2. The name
 of the object file will be N1 if N2 is omitted. May use | instead of : as
 separator.

-la:N1:N2 Add object file N1 to library and give it member name N2. The member
 name will be N1 if N2 is omitted. May use | instead of :.

-ld:N1 Delete member N1 from library.

-v0 Silent operation. No output to console other than warning and error

messages.

-v1 Verbose. Output basic information about file names and types (Default).

-v2 More verbose. Tell about conversions and library operations.

-wdXXX Disable warning number XXX.

-weXXX Treat warning number XXX as an error.

-edXXX Disable error message number XXX.

-ewXXX Treat error number XXX as warning.

-h Help. Print list of options.

@RFILE Read additional command line parameters from response file RFILE.

Command line parameters can be stored in a response file. This can be useful if the
command line is long and complicated. Just write @ followed by the name of the response
file. The contents of the response file will be inserted at the place of its name.

Response files can be nested, and there can be a maximum of ten response files.

Response files can have multiple lines and can contain comments. A comment starts with #
or // and ends with a line break.

3 Warning and error control
Objconv can be called from a make utility. The make process will stop in case of an error
message but not in case of warning messages. It is possible to disable specific error
messages, to convert errors to warnings and to convert warnings to errors.

It is possible to disable error number 2005 is you want the input file and output file to have
the same name. It is possible to disable error number 2505 if you want to mix object files
with different word sizes in the same library.

4 Converting file formats
An object file can be converted from one format to another by specifying the desired format
for the output file. The format of the input file is detected automatically. For example, to
convert the 32-bit COFF file file1.obj to ELF:

 6

objconv -felf32 file1.obj file1.o

The name of the output file will be generated, if it is not specified, by replacing the extension
of the input file with the default extension for the target format. The name of the output file
must be different from the input file.

The output file will always have the same word size as the input file. It is not possible to
change the word size.

A library is converted in the same way as an object file:

objconv -felf32 file1.lib file1.a

You may use the -nu option to add or remove leading underscores on symbol names.

Debug information and exception handling information is removed from the file, by default, if
the format of the output file is different from the input file. It is recommended to remove this
information because it will be incompatible with the target system. Objconv does not include
a facility for converting this information to make it compatible. You may get an unresolved
reference named __gxx_personality_v0 when converting from Gnu systems to
another format if the exception handling information is not removed.

The input file should preferably be generated from assembly code with careful observation
of the calling conventions of the target system. Compiler-generated code should not be
converted but recompiled on the target platform. If the source code is not available then it
may be necessary to disassemble the object file, fix any incompatibilities in the assembly
code, and then assemble again. Linux, BSD and Mac systems are very similar and may be
compatible with each other without recompiling.

The reasons why conversion of compiler-generated code to a different format may not work
can be summarized as follows:

Reasons why conversion of compiler-generated code may fail
Calling conventions
in 64-bit mode

The calling conventions in 64-bit Windows and 64-bit Linux are very
different. Functions with integer parameters will not work. Windows
functions may use a shadow space not available in Linux. Linux
functions may use a red zone not available in Windows.

Calling conventions
in 32-bit mode

Most compilers have the same calling conventions in 32-bit mode,
except for class member functions in Microsoft-compatible compilers.
Use the keyword __cdecl on member function declarations in C++ on
Microsoft-compatible compilers to force a compatible calling convention,
or use friend functions instead of member functions.

Register usage
conventions in 64-bit
mode

Linux functions may modify registers RSI, RDI and XMM6 - XMM15,
which must be preserved by Windows functions.

Register usage
conventions in 32-bit
mode

The register usage conventions are the same in all 32-bit systems
except for Watcom compilers.

Mangling of function
names

Different compilers use different name mangling schemes. Use extern
"C" on all function declarations in C++ to avoid name mangling. If this
is not possible then you may have to change the mangled name by
using the -nr option in objconv.

Leading under-
scores on names

Use the -nu option on objconv to add or remove leading underscores
when converting 32-bit files.

Initialization and Initialization and termination code is used for calling the constructors

 7

termination code and destructors of global objects and for initializing function libraries.
This code is not compatible between different systems.

Exception handling
and stack unwinding
information

This information is not compatible between different systems. Do not
rely on structured exception handling.

Virtual tables and
runtime type
identification

Do not use virtual member functions or runtime type identification.

Communal functions
and data

Objconv does not include a feature for converting communal
(coalesced) data. Do not use function-level linking (/Gy) on Microsoft
compilers or -ffunction-sections on Gnu compilers.

Incompatible
relocation types

Mach-O files allow a relocation type that computes addresses relative to
an arbitrary reference point. This is not supported by other systems.
This is one of the reasons why objconv cannot convert from Mach-O to
other file formats. 64-bit COFF files may contain image-relative
relocations. This is not supported in other file formats.

Compiler-specific
library calls

Most compilers can generate calls to library functions that are specific
to that particular compiler. It may be necessary to convert the library
function as well or make a replacement for this function.

Calls to operating
system

Operating system calls are not compatible among systems.

Position-
independent code

Linux, BSD and Mac systems require position-independent code when
making shared objects (*.so). Windows systems are not able to make
position-independent code. Use static linking when using converted
object files on these systems. Avoid conversion of compiler-generated
position-independent code. See pic.asm in source.zip for
instructions on how to make position-independent code in MASM.

Lazy binding Object files that use lazy binding cannot be converted because the
import tables are not compatible with other systems.

Default library
information

Information in object files about which libraries to include is not
converted by objconv.

More details about incompatibilities between different platforms are documented in my
manual number 5: "Calling conventions for different C++ compilers and operating systems".
(www.agner.org/optimize).

My manual number 2: "Optimizing subroutines in assembly language" explains how to make
function libraries that are compatible with multiple platforms. (www.agner.org/optimize).

5 Modifying symbols
It is possible to modify the names of public and external symbols in object files and libraries
in order to prevent name clashes, to fix problems with different name mangling systems,
etc.

Note that symbol names must be specified in the way they are represented in object files,
possibly including underscores and name mangling information. Use the dump or
disassembly feature to see the mangled symbol names.

To change the symbol name name1 to name2 in COFF file file1.obj:

objconv -fcoff -nr:name1:name2 file1.obj file2.obj

http://www.agner.org/optimize
http://www.agner.org/optimize

 8

The modified object file will be file2.obj. Objconv will replace name1 with name2
wherever it occurs in public, external and local symbols, as well as section names and
library member names. All names are case sensitive.

It is possible to give a public symbol more than one name. This can be useful for the
purpose of supporting multiple name mangling schemes with the same object or library file.
To give the function named function1 the alias function2:

objconv -fcoff -na:function1:function2 file1.obj file2.obj

No more than one operation can be specified for the same symbol name. For example, you
cannot remove an underscore from a name and make an alias at the same time. You have
to run objconv twice to so. For example, to convert COFF file file1.obj to ELF, remove
underscores, and make an alias:

objconv -felf -nu file1.obj file1.o
objconv -felf -na:function1:function2 file1.o file2.o

Likewise, you have to run objconv twice to make two aliases to the same symbol.

It is possible to make a public symbol weak in ELF files. A weak symbol has lower priority so
that it will not be used if another public symbol with the same name is defined elsewhere.
This can be useful for preventing name clashes if there is a risk that the same function is
supplied in more than one library. Note that only the ELF file format allows this feature. To
make public symbol function1 weak in ELF file file1.o:

objconv -felf -nw:function1 file1.o file2.o

COFF and OMF files have a different feature called weak external symbols. This is not
supported by objconv.

Objconv can hide public symbols by making them local. A public symbol can be made local
if you want to prevent name clashes or make sure that the symbol is never accessed by any
other module. To hide symbol DontUseMe in COFF file file1.obj:

objconv -fcoff -nl:DontUseMe file1.obj file2.obj

It is also possible to hide external symbols. This can be used for preventing link errors with
unresolved externals. The hidden external symbol will not be relocated. Note that it is
dangerous to hide an external symbol unless you are certain that the symbol is never used.
Any attempt to access the hidden symbol from a function in the same module will result in a
serious runtime error.

All symbol modification options can be applied to libraries as well as to object files.

6 Managing libraries
A function library (archive) is a collection of object files. Each member (object file) in the
library has a name which, by default, is the same as the name of the original object file.
Objconv will always modify the member names, if necessary, to meet the following
restrictions:

• Any path is removed from the member name.

• The member name (including extension) cannot be longer than 15 characters. This
is for the sake of compatibility between different systems that differ in the way longer

 9

names are stored. The name is truncated if necessary.

• Member names must be different. Names that become identical after truncation will
be modified to make them different.

• The member name must end in .obj for COFF and OMF files, or .o for ELF and
Mach-O files. The extension is changed or added if necessary.

All libraries contain a symbol index in order to make it easier for linkers to find a particular
symbol. Objconv will always remake the symbol index whenever a library file is modified.

Objconv can add, remove, replace, extract, modify or dump library members.

Rebuilding a library
To remove any path from member names and rebuild the symbol table in library
mylib.lib:

objconv -fcoff mylib.lib mylib2.lib

Converting a library
To convert library mylib.lib from COFF to ELF format:

objconv -felf mylib.lib mylib.a

Building a library or adding members to a library
To add ELF object files file1.o and file2.o to library mylib.a:

objconv -felf -la:file1.o -la:file2.o mylib.a

or alternatively:

objconv -felf -lib mylib.a file1.o file2.o

The -lib syntax is intended for make utilities that produce a list of object files separated by
spaces. The library mylib.a will be created if it doesn't exist.

If you want to preserve the original library without the additions then give the new library a
different name:

objconv -felf -la:file1.o -la:file2.o mylib.a mylib2.a

Any members of the old library with the same names as the added object files will be
replaced. Members with different names will be preserved in the library.

Any specified options for format conversion or symbol modification will be applied to the
added members, but not to the old members of the library.

Removing members from a library
To delete member file1.o from library mylib.a:

objconv -felf -ld:file1.o mylib.a mylib2.a

 10

Extracting members from a library
To extract object file file1.o from library mylib.a:

objconv -felf -lx:file1.o mylib.a

To extract all object files from library mylib.a:

objconv -felf -lx mylib.a

Any specified options for format conversion or symbol modification will be applied to the
extracted members, but the library itself will be unchanged.

No more than one option can be specified for each library member. For example, you can't
extract and delete the same member in one operation.

Modifying library members
To rename library member file1.o to file2.o in library mylib.a:

objconv -felf -nr:file1.o:file2.o mylib.a mylib2.a

To rename symbol function1 to function2 in library mylib.a:

objconv -felf -nr:function1.o:function2.o mylib.a mylib2.a

Any symbol modification option specified will be applied to all library members that have a
symbol with the specified name.

Dumping library contents
To show all members and their public symbol names in library mylib.a:

objconv -fd mylib.a

Note that the member names shown are the names before conversion. All other commands
use the member names after any path has been removed and the length has been limited to
15 characters.

To show the complete symbol list of member file1.o in library mylib.a:

objconv -fdhs -lx:file1.o mylib.a

7 Dumping files
Objconv can dump file headers, symbol tables, etc. for various types of files. For example,
to dump the file header, section headers and symbol table of file1.obj:

objconv -fdfhs file1.obj

8 Disassembling files
Objconv can disassemble object files, executable files, etc. For example, to disassemble the
dynamic link library file1.dll:

 11

objconv -fasm file1.dll file1.asm

The output file uses standard MASM syntax. It is attempted to make the output file fully
compatible with the Microsoft assembler (MASM or ML). However, it may be necessary to
make minor modifications in the output file before it can be assembled, for example if
symbol names contain dots or other characters that MASM syntax doesn't allow, if
segments have a non-default alignment, or if the source file contains relocations for
position-independent code that is not supported by MASM.

The disassembler supports the full instruction set for all 16, 32 and 64 bit x86 Intel and AMD
processors, including the SSE4 instruction set, 3DNow, privileged instructions, VT
instructions, and known undocumented instructions, totaling more than 900 instructions.

The quality of the disassembly depends on the amount of information contained in the input
file. Object files generally contain more information about symbol names, types, etc. than
executable files do. COFF and ELF files contain more symbol names than OMF and Mach-
O files do.

The disassembler goes to great lengths to distinguish between code and data, to determine
the type of each data item, to guess where each function begins and ends, to identify import
tables, jump tables, virtual function tables, etc. Nevertheless, the disassembler may
sometimes misinterpret data as code, or fail to determine the type of a data item. When the
disassembler is in doubt whether something is code or data, it will show it as both.

In simple cases, the quality of the disassembly may be good enough for making
modifications in an object file or for extracting a single function from a dynamic link library.
The disassembly of an executable file is unlikely to be good enough for remaking a fully
working executable, but it is often good enough for identifying problems in the code.

8.1 How to interpret the disassembly
The following example shows what a piece of disassembled code may look like:

_text SEGMENT PARA PUBLIC 'CODE' ; section number 1

?testb@@YAHH@Z PROC NEAR
 mov eax, dword ptr [esp + 04H] ; 0000 _ 8B. 44 24, 04
; Note: Memory operand is misaligned
 mov ecx, dword ptr [?alpha@@3HA] ; 0004 _ 8B. 0D, 00000000(d)
 add ecx, eax ; 000A _ 03. C8
 push ecx ; 000C _ 51
 call ?testa@@YAHH@Z ; 000D _ E8, 00000000(rel)
 add esp, 4 ; 0012 _ 83. C4, 04
 mov ecx, offset ?list1@@3PAHA ; 0015 _ B9, 00000000(d)
; Filling space: 06H
; Filler type: lea with same source and destination
 db 8DH, 9BH, 00H, 00H, 00H, 00H
ALIGN 8
?_001: add eax, dword ptr [ecx] ; 0020 _ 03. 01
 add ecx, 4 ; 0022 _ 83. C1, 04
 cmp ecx, offset ?list1@@3PAHA + 00001000H ; 0025 _ 81. F9, 00001000(d)
 jl ?_001 ; 002B _ 7C, F3
 ret ; 002D _ C3
?testb@@YAHH@Z ENDP
_text ENDS

This code can be interpreted as follows:

The name ?testb@@YAHH@Z is the name of the function int testb(int x) as it is
mangled by the Microsoft C++ compiler. The disassembler does not translate mangled
names to C++ names for you. The MASM assembler allows the characters ? @ $ _ in
symbol names.

 12

Line 0000 is the first instruction of the function testb. It reads the parameter x from the
stack into register eax. Line 0004 reads a value from a variable in the data segment into
ecx. The name ?alpha@@3HA is a mangled name for int alpha. The note indicates
that alpha is not optimally aligned. Such notes always apply to the instruction that follows.
Line 000A adds the value of x in eax to the value of alpha in ecx. Line 000C pushes this
value on the stack as a parameter to the following function call. Line 000D is a call to
function int testa(int) with a mangled name. The return value is in eax. Line 0012
cleans up the stack after the function call. Line 0015 loads the address of ?list1@@3PAHA
into ecx. This is the mangled name of an array int list1[].

Next comes a multi-byte nop for aligning the subsequent loop entry. The compiler has used
lea ebx,[ebx+00000000H] instead of 6 nop instructions for filling 6 bytes. The
disassembler has written the exact byte sequence in order to avoid that the lea instruction
is replaced by a shorter version when the code is re-assembled. The disassembler cannot
know whether the desired alignment is 8 or 16. It is recommended that you remove the filler
bytes and write align 8 or align 16 if you need to re-assemble the code. The
assembler will then insert an appropriate multi-byte nop.

Line 0020 is a loop entry with the label ?_001. The input file does not indicate a name for
this label. Therefore the disassembler has assigned the arbitrary name ?_001. Subsequent
nameless code and data labels will be named ?_002, etc.

The first line in the loop reads an integer from the address that ecx points to, i.e. an
element from array list1, and adds it to eax. Line 0022 adds 4, which is the size of each
array element, to ecx in order to make it point to the next array element.

Line 0025 compares ecx with the address of the end of the array. Line 002B reads the
flags from the preceding cmp instruction and jumps back to the top of the loop if the end of
the array has not been reached. Line 002D returns from function testb. The return value is
in eax.

This code could be translated back to C++:

int testa(int x);
int list1[1024];
int alpha;

int testb(int x) {
 int y = testa(x + alpha);
 for (int i=0; i<1024; i++) y += list1[i];
 return y;
}

The comments to the right of the disassembly code are interpreted as follows. The four
digits after the semicolon is the hexadecimal address of the instruction. This is actually a 32-
bit value, but in this case the disassembler has saved some space by using only 4
hexadecimal digits. After the underscore comes the instruction code as hexadecimal bytes.
The delimiters : . , separate the different parts of the instruction code.

The text in parenthesis after the binary code indicates various types of cross-references,
using the following abbreviations:

Abbreviation Cross reference type
d Direct address. The absolute virtual address of target is inserted
rel Self-relative address
imgrel Image-relative address
segrel Address is relative to a segment or group

 13

refpoint Address is relative to an arbitrary reference point
seg A segment address or segment descriptor
sseg Only the segment part of a far target address is inserted
far Offset and segment of a far target address
GOT Global offset table entry
GOT r Self-relative address of global offset table entry
PLT r Self-relative address of procedure linkage table entry

The information about cross-reference types is usually obtained from relocation tables in the
input file. The disassembler will attempt to reconstruct missing cross-reference information,
if possible, in the case of executable files without relocation tables.

8.2 Checking the syntax of machine code
The disassembler adds notes to the output file if an instruction could be coded in a more
efficient way or if there are syntax errors in the code. This can be useful for debugging
purposes and for testing compilers and assemblers during development.

The type of syntax errors that the disassembler can detect are errors in an individual
opcode, for example a memory operand on an instruction that allows only register
operands. Objconv cannot detect errors in the programming logic, such as a PUSH that is
not matched by a later POP.

Objconv will add notes in the disassembly for opcodes that could be coded in a more
efficient way; for example an instruction that could be made smaller by replacing a 32-bit
constant with a sign-extended 8-bit constant.

A note or error message does not necessarily indicate an error in the compiler that built the
code. Compilers may sometimes have good reasons for coding an instruction in an
apparently suboptimal form. Error messages typically occur when the compiler has placed
data in the code segment and the disassembler has failed to identify this as data. It is very
unlikely that the error messages you see are caused by bugs in the compiler.

9 Frequently asked questions

9.1 Why is there no graphical user interface?
Most users will prefer to call objconv from a make utility, a script or a batch file. A graphical
user interface would compromise the cross-platform portability of the source code.

9.2 What kind of files can objconv convert?
Objconv can convert object files (*.obj, *.o) and static library files (*.lib, *.a) for 32-bit and 64-
bit x86 systems, such as Windows, Linux, BSD and Intel-based Mac OS X.

The conversion is most likely to be successful if the file is built from assembly code with
careful consideration of the calling conventions etc. of the target system. Conversion of
compiler-generated code for 32-bit systems will work in simple cases where there are no
system calls or other features known to cause problems. Conversion of 64-bit compiler-
generated code will generally not work.

Se page 6 for a list of reasons why conversions may fail.

 14

9.3 Can I build a function library that works in all operating systems?
Yes. If you build a static function library from an assembly language source code and you
take care to obey all function calling conventions etc. then you can use objconv to convert
the library to different file formats so that it works in all x86 systems. You need to make one
version for 32-bit systems and another version for 64-bit systems. See my manual 2:
"Optimizing subroutines in assembly language" for details.

9.4 Can I convert an executable file from Windows to Linux?
No. It is not possible to convert executable files between systems because they contain
incompatible system calls. You may run the executable file under a Windows emulator
(Wine).

9.5 Can I convert a dynamic link library to another system?
No. Objconv does not support the conversion of dynamic link libraries and shared objects.

9.6 Why can't I convert an export library?
The export library contains no function code. It only contains references to a DLL.

9.7 Can I convert a static library to a dynamic library?
Yes. You don't need objconv for this. The standard linker can do this. You only have to add
a simple entry function.

9.8 Can I convert from a dynamic library to a static library?
No. If the source code is not available then you will have to disassemble the DLL and
identify the function or functions you need. Then re-assemble this code. This is no easy job,
but it may be possible in simple cases.

9.9 Can I convert from 32 bit code to 64 bit code?
No. The instruction codes are not compatible.

9.10 Can I convert a Windows function library to use it under other systems?
It may be possible to convert a 32-bit Windows function library (*.lib) and use it under Linux
and other systems if the library contains no calls to system functions and no access to
vendor-specific variables or functions. Conversion of commercial function libraries is unlikely
to work. 64-bit Windows code is not compatible with 64-bit Linux.

9.11 I have problems porting my Windows application to Linux or Mac
because the Gnu compiler has a strict syntax. Can I convert the compiled
Windows code instead?

You are trying to solve a small problem by creating a much bigger problem. There are so
many compatibility problems when converting compiler-generated code that this method is
doomed to failure. Try to use a compiler that supports both operating systems, such as Intel
or Gnu.

 15

9.12 Is it possible to convert mangled function names?
It is very tedious to do this manually. As yet there is no tool available for converting mangled
names automatically. The Microsoft mangled names contain more information than the Gnu
mangled names do, so it would be preferable to convert from Windows to Linux rather than
vice versa. Se my manual 5: "Calling conventions for different C++ compilers and operating
systems".

9.13 Is it possible to convert function calling conventions automatically?
No conversion is needed when converting between different 32-bit systems, except for class
member functions using the Microsoft __thiscall convention and in rare cases
differences in stack alignment. A conversion is needed when converting 64-bit object files
because Windows and Linux systems use different calling conventions in 64-bit mode.

It is possible to make a call stub in assembly code that does the necessary conversions.
The function call will then have to go through the call stub. You have to take care of all
differences in parameter transfer conventions, register usage conventions, and stack
shadow space. There may be a problem when converting from 64-bit Linux to 64-bit
Windows if the function uses the red zone on the stack. Se my manual 5: "Calling
conventions for different C++ compilers and operating systems".

It might be possible, at least in principle, to construct a tool that makes such a call stub
automatically based on the information of function parameter types contained in the
mangled function names. This would not work, however, for parameters of composite type
because the mangled function names do not contain enough information to predict how a
class object parameter is transferred. I am not going to build such a tool.

9.14 Does the disassembler have an interactive feature?
No. The current version of objconv has no feature for manually telling the disassembler
what is code and what is data, etc.

9.15 Is it possible to disassemble an executable file to modify it and then
assemble it again?

The disassembly of an executable program file is unlikely to contain enough information for
reconstructing a fully working executable. It may be possible to do this on a DLL in simple
cases.

9.16 Is it possible to disassemble an object file and fix all compatibility
problems manually?

If you are an expert, yes. Many compatibility problems can be fixed manually. But this is
hard work and there are many pitfalls. This is not for the faint-hearted!

9.17 Is it possible to reconstruct C++ code from a disassembly?
Reconstructing the logic behind a code from the disassembly is a lot of detective work, but it
is possible with very small files. The disassembly of a program file typically contains
hundreds of thousands of code lines. Interpreting so much code is simply an unmanageable
job.

 16

9.18 Why do I get error messages in the disassembly file?
Most disassembly errors occur because the compiler has placed data in the code segment
and the disassembler attempts to interpret these data as code. The disassembler does its
best to distinguish between code and data, but it is not always successful at this.

The disassembler will sometimes show the same binary data both as code and as data if it
is in doubt what it is.

Data in the code segment should be avoided because this leads to inefficient caching and
code prefetching. Unfortunately, some compilers are still putting jump tables etc. in the code
segment. Older compilers do this a lot.

9.19 Can I disassemble byte code?
Objconv cannot convert or disassemble the byte code that is used for .net or Java. There
may be other tools available for this.

9.20 I have problems assembling the output of the disassembler
Use the MASM assembler. ml.exe for 32-bit assembly and ml64.exe for 64 bit assembly.
The assembler may give error messages if the alignment of the standard segments is
different from the default. The default alignment for _text and _data is para (16) in 64 bit
mode or if .xmm is specified, and dword (4) if .xmm is not specified. If the default alignment
doesn't fit your purpose then append a $-sign and something to the segment name, e.g.
_text$align32 and specify the desired alignment.

The name of all code segments must be _text or _text$something to make MASM
recognize them as code segments.

Symbol names containing dots (.) must be changed to something else before assembling.
MASM accepts symbol names beginning with a dot if option dotname is specified.
MASM never accepts dots anywhere else in a symbol name because the dot is normally
used as a structure member operator.

Debug segments may contain segment-relative references that MASM will not allow in a flat
memory model. Remove the debug segments and any references to symbols in these
segments.

MASM does not support communal data and functions. The disassembler will insert a note
at communal sections and convert it to non-communal code.

9.21 Why does the disassembler use MASM syntax?
I have decided not to support the syntax of other assemblers such as GAS, NASM, YASM,
FASM, WASM, etc. because I believe that we need a standardization of assembly syntax,
and MASM is the closest we get to a de facto standard, despite its deficiencies.

The open source community ought to set up a working group for defining a standard for x86
assembly syntax and make tools that support it. This standard syntax should be a superset
of MASM syntax in order to handle legacy code.

We cannot rely on any commercial company to maintain a good assembler because this is
obviously not a profitable enterprise.

 17

9.22 Why does my disassembly take so long time?
The handling of symbol tables etc. in objconv is not optimized for very large files. Converting
or disassembling files of megabyte size can take several minutes. The handling of small to
medium size files goes very fast.

9.23 How can I save the output of the dump screen to a file?
objconv -fdhs myfile > outputfile.txt

9.24 Can you help me with my programming problems?
No. I am not doing programming work for others, regardless of how much you pay. Sorry.

9.25 Are there any alternatives to objconv?
There are certain alternative tools that can convert and manipulate object files.

Intel's C++ compiler can compile the same source code on both Windows, Linux, BSD and
Mac OS X platforms (www.intel.com). There are various versions of the Gnu C++ compiler
for all platforms as well, although the Windows version is not as good as the versions for
other platforms.

The Gnu objcopy utility can convert between various object file formats. The objcopy
utility can be recompiled to support the file formats you need.

The Microsoft linker and library manager can convert from 32-bit OMF to COFF. The
Editbin tool that comes with Microsoft compilers can convert from 32-bit OMF to COFF
and modify COFF files.

The Digital Mars compiler includes a tool named COFF2OMF for converting 32-bit COFF files
to OMF, and a disassembler OBJ2ASM that can disassemble object files in OMF, COFF and
ELF format.

The Open Watcom compiler includes a disassembler called WDISASM and other utilities.

The tdump utility that comes with Borland compilers is useful for dumping COFF and OMF
files, including executable files.

debug.exe. Comes with most versions of Windows. Can disassemble, debug and modify
16-bit executables.

10 Source code
The source code can be used for building the objconv executable for a particular platform
and for modifying the program. The code is in C++ language and can be compiled with
almost any modern C++ compiler that supports 64-bit integers on any platform with little-
endian memory organization. The code has been tested with Microsoft, Intel and Gnu
compilers. The code cannot run on platforms with big-endian memory organization, such as
the PowerPC-based Mac.

You don't need to read the rest of this chapter unless you want to modify the source code of
objconv.

http://www.intel.com/

 18

10.1 Explanation of the objconv source code
The source code is intended to be compatible with all C++ compilers. Any modified code
should preferably be tested on more than one compiler, including the Gnu compiler which
has the strictest syntax checking.

Unfortunately, the C++ syntax has no standardized way of defining integers with a specific
number of bits. Therefore, it is essential that you use the type definitions in maindef.h for
defining integers with a specific size, e.g. int32 for a 32-bit signed integer, and uint32 for
an unsigned 32-bit integer.

All dynamic data allocation must use the container classes declared in containers.h in
order to prevent memory leaks. The following container classes are available:

CMemoryBuffer is useful for containing binary data of mixed type. You can append a data
object x of any type to an instance A of CMemoryBuffer with A.Push(&x,sizeof(x)).
You can append a zero-terminated ASCII string s with A.PushString(s). You can read
a data object x of type mytype stored in A at offset os with x = A.Get<mytype>(os);
or x = *(mytype*)(A.Buf() + os); The former method does not work with old
versions of the Gnu compiler if A is an instance of a template class derived from
CMemoryBuffer, such as CELF<>. Use the type casting method in CELF and its
descendants.

Note that it is dangerous to make a pointer to an object stored in a container because the
internal buffer in the container class instance can be re-allocated when new data are added
to the buffer. In some cases, the source code does use the unsafe technique of storing
pointers to such data, but only when there is certainty that nothing is added to the container
after the pointer has been assigned.

The container class CFileBuffer is derived from CMemoryBuffer. It adds methods for
reading and writing files and for detecting the type of a file.

CTextFileBuffer, derived from CFileBuffer, is used for ASCII files.

The overloaded operators >> and << are used for transferring ownership of a memory
buffer from one container to another. It works with all descendants of CFileBuffer.

The template classes CArrayBuf<RecordType> and CSList<RecordType> are used
for dynamic arrays where all members have the same type RecordType. Instances of
these classes can be used as simple arrays with the index operator []. CArrayBuf allows
RecordType to have constructors and destructor, CSList does not. A dynamic array of
type CArrayBuf has a size which cannot be changed after it has been set. A dynamic
array of type CSList can be appended or resized at any time.

CSList is useful for sorted lists. A.PushSort(x) will insert object x in the list A in the right
position so that the list is kept sorted at all times. A.PushUnique(x) does the same, but
avoids duplicates. The sort criterion is determined by defining the operator < for
RecordType.

All conversions of data files are done by a number of converter classes, which are all
descendants of CFileBuffer. A file buffer can convert the data it contains by creating an
object of the appropriate converter class, transferring ownership of its data buffer to the
converter class object, letting the converter class do the conversion, and then taking back
ownership of the converted data buffer, as shown in this example:

void CConverter::OMF2COF() {
 // Convert OMF to COFF file

 19

 COMF2COF conv; // Make object for conversion
 *this >> conv; // Give it my buffer
 conv.ParseFile(); // Parse file buffer
 if (err.Number()) return; // Return if error
 conv.Convert(); // Convert
 *this << conv; // Take back converted buffer
}

The operators >> and << can transfer ownership of the contained data buffer because the
classes CConverter and COMF2COF are both descendants of CFileBuffer.

The converter class CELF and its descendants are template classes with all the data
structures of 32-bit or 64-bit ELF files as template parameters. This is because of the
considerable difference between the data structures in 32-bit and 64-bit ELF files. The
templates are instantiated explicitly in the bottom of elf.cpp.

The reading and interpretation of command line parameters is done by the class
CCommandLineInterpreter, which has a single instance cmd. cmd is a global object so
that it can be accessed from all parts of the program without being passed as a parameter.

Another global object is the error handler err, which is an instance of the class
CErrorReporter. All error reporting is done with err.submit(ErrorNumber).
Exceptions are not used, for reasons of performance.

The Gnu compiler version 4 has a problem with inheritance from template classes because
of an overly strict interpretation of the so-called two phase lookup rule. This problem is
circumvented by putting this-> in front of every access to members of an ancestor class
in a class derived from a template class. For example, to access CELF<>::NSections
from CELF2COF<> (which is derived from CELF<>), you have to write this->NSections.
It is recommended to test that the code can be compiled with the Gnu compiler in order to
catch these problems.

10.2 How to add support for new file formats
Define an id constant FILETYPE_NEWTYPE in maindef.h to identify the new file type. Add
functionality in CFileBuffer::GetFileType() in containers.cpp for detecting this
file type and its word size (16, 32 or 64 bits). Add a name for this file type to
FileFormatNames[] in containers.cpp.

Define a class CNewType derived from CFileBuffer with member functions for parsing
and dumping files of this type. The class declaration goes into containers.h. The
definition goes into a new .cpp file named after the new type. Define converter classes for
converting to and from the COFF or ELF type analogously to the existing converter classes
in converters.h. Each converter class is derived from the class for the file type you
convert from. Add member functions to CConverter for each converter class. Add case
statements in CConverter::Go() in main.cpp for each possible conversion. A
conversion may go through multiple steps if there is no converter class for direct conversion
between the two types. You may also define a converter class for converting from NewType
to itself in order to make it possible to modify symbol names in a file of type NewType
without converting to one of the base types COFF or ELF and back again.

If the new file type contains x86 or x86-64 code then you may add a converter class for
disassembling the new type. See below for the interface to the disassembler.

Note that the different object file formats differ in the way self-relative references are defined
in relocation records. ELF and Mach-O files define self-relative references relative to the
beginning of the relocation source field. COFF and OMF files define self-relative references

 20

relative to the end of the instruction needing the reference, as the x86 processors do. The
difference between the two methods is equal to the length of the source field plus the length
of any immediate operand in the instruction.

Objconv does not support file types with big endian memory organization.

10.3 How to add features to the disassembler
Only file types based on the x86 instruction set and its many extensions can be handled by
the disassembler in objconv.

To add support for disassembling a new file type, you first have to make a converter class,
as explained above. The converter class creates an instance of CDisassembler and uses
the following member functions of CDisassembler: Use CDisassembler::Init for
defining file type and possibly image base. Use CDisassembler::AddSection for
defining each segment or section. Sections are numbered sequentially, starting at 1. Use
CDisassembler::AddSymbol for defining local, public and external symbols. These can
be numbered in random order, but numbers must be positive and limited. Use
CDisassembler::AddRelocation for defining all cross-references and relocatable
addresses. These can refer to symbol numbers. Use CDisassembler::Go to do the
disassembly after all sections, symbols and relocations have been defined. Finally, take
ownership of the disassembly file CDisassembler::OutFile.

You can add support for new instruction codes by adding entries to the opcode tables in
opcodes.cpp. New opcodes are likely to be 3-byte opcodes beginning with 0F 38 through
0F 3B. These are defined in tables OpcodeMap2 through OpcodeMap5. The meaning of
each field in the opcode table records is defined in the beginning of disasm.h.

Modifications to the functionality of the disassembler go into disasm1.cpp. Modifications to
the way the disassembly output looks or support for alternative assembly syntaxes go into
disasm2.cpp.

10.4 File list
Files in objconv.zip

instructions.pdf This file
objconv.exe Executable for Windows
source.zip Complete source code

Files in source.zip

build.sh Script for building objconv for Linux, BSD and Mac systems
objconv.vcproj Project file for Microsoft compiler
objconv.suo Options file for Microsoft compiler
pic.asm Example of how to make position-independent code in MASM
cmdline.cpp Defines class CCommandLineInterpreter for reading command line
cof2asm.cpp Defines class CCOF2ASM for disassembling COFF files
cof2cof.cpp Defines class CCOF2COF for modifying COFF files
cof2elf.cpp Defines class CCOF2ELF for converting from COFF to ELF
cof2omf.cpp Defines class CCOF2OMF for converting from COFF to OMF
coff.cpp Defines class CCOFF for parsing and dumping COFF files
containers.cpp Container classes CMemoryBuffer, CFileBuffer, CTextFileBuffer
disasm1.cpp Defines part of class CDisassembler for disassembling
disasm2.cpp Defines part of class CDisassembler for disassembling
elf.cpp Template class CELF for dumping and parsing ELF files
elf2asm.cpp Template class CELF2ASM for disassembling ELF files

 21

elf2cof.cpp Template class CELF2COF for converting from ELF to COFF
elf2elf.cpp Template class CELF2ELF for modifying ELF files
elf2mac.cpp Template class CELF2MAC for converting from ELF to Mach-O
error.cpp Defines class CErrorReporter and error texts
library.cpp Defines class CLibrary for building and modifying .lib and .a files
mac2asm.cpp Defines class CMAC2ASM for disassembling Mach-O files
macho.cpp Defines class CMACHO for parsing and dumping Mach-O files
main.cpp Classes CMain and CConverter for dispatching command
omf.cpp Defines class COMF for parsing and dumping OMF files
omf2asm.cpp Defines class COMF2ASM for disassembling OMF files
omf2cof.cpp Defines class COMF2COF for converting from OMF to COFF
omfhash.cpp Defines class COMFHashTable for hash tables in OMF libraries
opcodes.cpp Tables for complete set of opcodes for disassembler
stdafx.cpp Needed only for precompiled headers
cmdline.h Declares class CCommandLineInterpreter and various constants
coff.h Structures and constants for COFF files
containers.h Declares container classes and container class templates
converters.h Declares many converter classes derived from CFileBuffer
disasm.h Declares several structures and classes used by disassembler
elf.h Structures and constants for ELF files
error.h Declares class CErrorReporter for error handling
library.h Structures and classes for managing .lib and .a files
macho.h Structures and constants for Mach-O files
maindef.h Type definitions and other main definitions
omf.h Structures, classes and constants for OMF files
stdafx.h Includes all the other .h files

10.5 Class list
The most important container classes and converter classes in the objconv source code are
listed below.

Container classes

CMemoryBuffer Declared in: containers.h
Defined in: containers.cpp
Inherit from: none
Description: This is the base container class that all file classes,
converter classes and all classes containing data of mixed types are
derived from. The size can grow as new data are added.

CFileBuffer Declared in: containers.h
Defined in: containers.cpp
Inherit from: CMemoryBuffer
Description: This is the container class that all converter classes and
other file handling classes are derived from. It adds methods for reading
and writing files and for detecting the input file type.

CTextFileBuffer Declared in: containers.h
Defined in: containers.cpp
Inherit from: CFileBuffer
Description: Container class for reading and writing ASCII text files.

CArrayBuf<> Declared in: containers.h
Defined in: containers.h
Inherit from: none
Description: Container class template for arrays where all records
have the same type. The record type is defined as a template
parameter. The size cannot be modified after it has been set. The
record type can have constructors and destructor.

 22

CSList<> Declared in: containers.h
Defined in: containers.h
Inherit from: CMemoryBuffer
Description: Container class template for arrays where all records
have the same type. The record type is defined as a template
parameter. The size can grow as new records are added. The list can
be sorted. The record type can not have constructors or destructor.

Classes for converting files, etc.

CMain Declared in: converters.h
Defined in: main.cpp
Inherit from: CFileBuffer
Description: Dispatching input file to CConverter or CLibrary

CConverter Declared in: converters.h
Defined in: main.cpp
Inherit from: CFileBuffer
Description: Dispatching input file to any of the converter classes

CLibrary Declared in: library.h
Defined in: library.cpp
Inherit from: CFileBuffer
Description: Reading and building library files of any type

COMFHashTable Declared in: library.h
Defined in: omfhash.cpp
Inherit from: none
Description: Reading and building hash table for OMF libraries

CCOF Declared in: converters.h
Defined in: coff.cpp
Inherit from: CFileBuffer
Description: Parsing and dumping of COFF and PE files

CCOF2ELF Declared in: converters.h
Defined in: cof2elf.cpp
Inherit from: CCOFF
Description: Conversion from COFF to ELF

CCOF2OMF Declared in: converters.h
Defined in: cof2omf.cpp
Inherit from: CCOFF
Description: Conversion from COFF to OMF

CCOF2ASM Declared in: converters.h
Defined in: cof2asm.cpp
Inherit from: CCOFF
Description: Disassembly of COFF and PE files

CCOF2COF Declared in: converters.h
Defined in: cof2cof.cpp
Inherit from: CCOFF
Description: Modification of COFF files

COMF Declared in: converters.h
Defined in: omf.cpp
Inherit from: CFileBuffer
Description: Parsing and dumping of OMF files

COMF2COF Declared in: converters.h
Defined in: omf2cof.cpp
Inherit from: COMF
Description: Conversion from OMF to COFF

COMF2ASM Declared in: converters.h
Defined in: omf2asm.cpp
Inherit from: COMF

 23

Description: Disassembly of OMF files
CELF<> Declared in: converters.h

Defined in: elf.cpp
Inherit from: CFileBuffer
Description: Parsing and dumping of ELF files. The 32-bit or 64-bit
ELF structures are defined as template parameters.

CELF2COF<> Declared in: converters.h
Defined in: elf2cof.cpp
Inherit from: CELF<>
Description: Conversion from ELF to COFF. The 32-bit or 64-bit ELF
structures are defined as template parameters.

CELF2MAC<> Declared in: converters.h
Defined in: elf2mac.cpp
Inherit from: CELF<>
Description: Conversion from ELF to Mach-O. The 32-bit or 64-bit
ELF structures are defined as template parameters.

CELF2ASM<> Declared in: converters.h
Defined in: elf2asm.cpp
Inherit from: CELF<>
Description: Disassembly of ELF files. The 32-bit or 64-bit ELF
structures are defined as template parameters.

CELF2ELF<> Declared in: converters.h
Defined in: elf2elf.cpp
Inherit from: CELF<>
Description: Modifications of ELF files. The 32-bit or 64-bit ELF
structures are defined as template parameters.

CMACHO Declared in: converters.h
Defined in: macho.cpp
Inherit from: CFileBuffer
Description: Parsing and dumping of Mach-O files

CMACUNIV Declared in: converters.h
Defined in: macho.cpp
Inherit from: CFileBuffer
Description: Parsing Mac universal binary files

CMAC2ASM Declared in: converters.h
Defined in: mac2asm.cpp
Inherit from: CMACHO
Description: Disassembly of Mach-O files

CDisassembler Declared in: disasm.h
Defined in: disasm1.cpp, disasm2.cpp, opcodes.cpp
Inherit from: none
Description: Disassembling code. Called from CCOF2ASM,
COMF2ASM, CELF2ASM, CMAC2ASM

CSymbolTable Declared in: disasm.h
Defined in: disasm1.cpp
Inherit from: none
Description: Manage symbol table during disassembly.

CCommandLineInterpreter Declared in: cmdline.h
Defined in: cmdline.cpp
Inherit from: none
Description: Interpretation of command line parameters

CResponseFileBuffer Declared in: converters.h
Defined in: cmdline.cpp
Inherit from: CFileBuffer
Description: Contains response file from command line

 24

11 Legal notice
Objconv is an open source program published under the conditions of the GNU General
Public License, as defined in www.gnu.org/copyleft/gpl.html. The program is provided
without any warranty or support.

It may not be legal to modify, convert or disassemble copyright protected software files
without permission from the copyright owner. It is an open question whether it is legal to
modify or convert a copyright protected function library and use it for other purposes or on
other platforms than presupposed in the license conditions. It is recommended to ask the
vendor for permission before developing and publishing any software that is built with the
use of a converted copyright protected function library.

Copyright law does not generally permit disassembly of copyright protected software for the
purpose of modifying the software, for circumventing a copy protection mechanism, for
using part of the code in other contexts, or for extracting the algorithms behind the code.

European and US copyright law may, under certain conditions, permit reverse engineering
of copyright protected software when the sole purpose is to extract the information
necessary for establishing interoperability with other software, e.g. to make other software
capable of producing data files that are compatible with said copyright protected software,
and only to the extent necessary for this purpose. However, I am not a legal expert. The
user must seek legal advise before deciding whether it is legal to use objconv for any such
purpose.

http://www.gnu.org/copyleft/gpl.html

	Introduction
	File types

	Command line syntax
	Warning and error control
	Converting file formats
	Modifying symbols
	Managing libraries
	Dumping files
	Disassembling files
	How to interpret the disassembly
	Checking the syntax of machine code

	Frequently asked questions
	Why is there no graphical user interface?
	What kind of files can objconv convert?
	Can I build a function library that works in all operating systems?
	Can I convert an executable file from Windows to Linux?
	Can I convert a dynamic link library to another system?
	Why can't I convert an export library?
	Can I convert a static library to a dynamic library?
	Can I convert from a dynamic library to a static library?
	Can I convert from 32 bit code to 64 bit code?
	Can I convert a Windows function library to use it under other systems?
	I have problems porting my Windows application to Linux or Mac because the Gnu compiler has a strict syntax. Can I convert the compiled Windows code instead?
	Is it possible to convert mangled function names?
	Is it possible to convert function calling conventions automatically?
	Does the disassembler have an interactive feature?
	Is it possible to disassemble an executable file to modify it and then assemble it again?
	Is it possible to disassemble an object file and fix all compatibility problems manually?
	Is it possible to reconstruct C++ code from a disassembly?
	Why do I get error messages in the disassembly file?
	Can I disassemble byte code?
	I have problems assembling the output of the disassembler
	Why does the disassembler use MASM syntax?
	Why does my disassembly take so long time?
	How can I save the output of the dump screen to a file?
	Can you help me with my programming problems?
	Are there any alternatives to objconv?

	Source code
	Explanation of the objconv source code
	How to add support for new file formats
	How to add features to the disassembler
	File list
	Class list

	Legal notice

