The Quality of IDA* Heuristics

R. Clausecker, F. Schintke

Introduction

IDA^{*} (iterative deepening A^{*}) is an algorithm to solve the *single source shortest path problem* in large graphs. In contrast to uninformed search algorithms like Dijkstra's algorithm, a problem-specific *heuristic function* h(v) is used to make informed decisions about what nodes to expand. Finding good heuristics for search problems is a challenging problem often made even harder by difficulties in telling which heuristic of a set of candidate heuristics is best. Using our novel measure of *heuristic quality* η , the performance of heuristic functions can be analysed effectively and the best heuristic for a given problem space chosen.

The Heuristic Quality η

Based on the Korf et al. (2001) formula for the number of expanded vertices $E(v_0, d, P)$ for an IDA^{*} search starting from v_0 to depth d

Heuristic Functions: Pattern Databases

$$E(v_0, d, P) = \sum_{i=0}^d N_i P(d-i)$$

where N_i is the number of vertices at distance *i* from v_0 and P(d-i) is the probability that $h(v) \le d-i$ for some random vertex *v*, we define the *heuristic quality*

$$\eta = \sum_{i=0}^{\infty} \frac{p(i)}{b^i}$$
(2)

(1)

With *b* being the *branching factor* and p(i) being the probability that h(v) = i for some random vertex *v*. Using η , we can show that the number of expanded nodes is proportional to b^d with η telling us how much the heuristic speeds up the search.

$$E(b,d,P) = \frac{b}{b-1}b^d\eta$$
 (3)

4	3	0	/
8	9	10	11
12	13	14	15
15 puzzle			

non-additive PDB

additive PDB

Pattern Databases: powerful IDA* heuristics obtained by taking a subset of the problem configuration and tabulating the solution lengths for the entire problem space. If designed carefully, h values of disjoint pieces of problem state can be added up to a powerful additive PDB heuristic.

histogram of a poor (Manhattan) heuristic

- plot η by the contribution of each sphere to its value
- large contribution \rightarrow much time spent at this distance
- good heuristics spend more time closer to the goal
- answers long standing question: h values of what part of the search space are most critical to performance?
- many heuristics have tweakable parameters
- so tweak them according to the histogramm

The quality of arbitrary heuristics is computed by treating it as an expected value

$$\eta = \mathbf{E}[b^{-h(v)}] \tag{4}$$

over all vertices in the search space. For this purpose, we developed *sphere stratisfied sampling*, a novel sampling scheme were the search space is stratified into *spheres* of vertices with a given distance to the goal vertex v_0 . Samples are taken according to the scheme

1. perform a random walk of *n* steps from v_0 to obtain a candidate vertex v_n

- 2. enumerate all shortest paths from v_0 to v_n ; if there is a path of less than *n* steps, discard v_n
- 3. otherwise, take v_n as an observation and compensate for the sampling bias by computing the probability with which v_n has been reached by the random walk from v_0

Although the sample is biased, the bias can be compensated for effectively, leading to low margins of error on η with reasonable sample sizes.

Publication

To appear as: R. Clausecker, F. Schintke. 2021. The Quality of Heuristic Functions for IDA^{*}. In Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021).