

SIMD-enhanced libc string functions
how it's done

Robert Clausecker <fuz@FreeBSD.org>
Getz Mikalsen <getz@FreeBSD.org>

Common Tasks
● copying strings (strcpy, memcpy, ...)
● finding string length (strlen, strnlen, ...)
● finding characters (strchr, memchr, ...)
● comparing strings (strcmp, memcmp, ...)
● finding substrings (strstr, memmem, ...)
● splitting at delimiters (strspn, strcspn, ...)

Common Tasks
● copying strings (read then write)
● finding string length (read then compare)
● finding characters (read then compare)
● comparing strings (read then compare)
● finding substrings (complicated)
● splitting at delimiters (read then set match)

What does that mean?
read

● char by char until end of string
● one load/compare/conditional branch per character

write
● char by char until end of string
● one write per character

compare
● char by char until match or end of string
● one compare/conditional branch per character

What does that mean?
read

● char by char until end of string
● one load/compare/conditional branch per character (slow)

write
● char by char until end of string
● one write per character (slow)

compare
● char by char until match or end of string
● one compare/conditional branch per character (slow)

Conclusion

Conclusion

Strings suck

What can we do about that?
● Get rid of strings (oof...)
● special-purpose instructions (arch dependent)

– speed varies depending on CPU model
– often only memcpy(), memset() supported

● strange hacks (hmm...)

SIMD

Your new best friend

SIMD
● Single Instruction Multiple Data
● SIMD register: short arrays of numbers
● common lengths: 16, 32, 64 bytes
● same operation on all elements
● but as fast as scalar operations
● SIMD with 16 bytes: 16x scalar performance

Scalar vs. SIMD

+

+

+

+

 A[ ]  C[ ]

 B[ ]

Scalar vs. SIMD

 A[ ]  C[ ]

 B[ ]

+

typical SIMD operations
Arithmetic (integer/FP)
● addition, subtraction, multiplication, ...

Logic
● element-wise comparison, and, or, xor, ...

Data transfer
● read, write, extract masks, ...

... many more

Strings and SIMD

How can this help us with string processing?

Strings and SIMD

How can this help us with string processing?
● load multiple characters at once
● process them simultaneously
● ...
● profit?

Difficulties

Difficulties

Difficulties

Difficulties

Difficulties
● We can easily overshoot the string's end
● For nul-terminated strings, we won't know

where that is until we see the nul byte
● Do we have to iterate char-by-char after all?

What can we do?

What can we do?

String bounds are fictious

What can we do?

String bounds are fictious
Let's overcome them!

Overcoming array bounds
● the computer does not know what an array is
● it only knows that there's memory at some

addresses but not at others

Overcoming array bounds
● the computer does not know what an array is
● it only knows that there's memory at some

addresses but not at others

thus:
● if we don't go too far out of bounds, it'll be fine!
● C doesn't let us, so let's use assembly

How far is too far?
● Memory is organised in pages
● size: arch dependent, usually 4096 bytes
● pages are either accessible entirely or not at all
● there is no more fine-grained memory

protection
– (check out CHERI, it's cool)

How far is too far?
● if at least one byte of a string is on a page, the

whole page is accessible
● aligned accesses never cross page boundaries

thus:
● if we're careful, it might just work!

What does that look like?

What does that look like?

What does that look like?

What does that look like?

What does that look like?

Writing Strings

Can't use the same approach:
● overreads are fine, overwrites are no good

Writing Strings

Can't use the same approach:
● overreads are fine, overwrites are no good

Instead
● write (possibly unaligned) chunks
● last write may overlap previous writes

Writing Strings

Writing Strings

Writing Strings

Writing Strings

Comparing Strings

Can't use the same approach
● strings may have different misalignment
● can't fix this after loading with SSE2

Comparing Strings

Can't use the same approach
● strings may have different misalignment
● can't fix this after loading with SSE2

Instead
● do aligned reads to check for nul bytes
● then unaligned reads to compare characters

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Set Matching

strcspn("foo bar", " \t\n");
● matches each char in string against set
● portable approach: Muła / Langdale algorithm

http://0x80.pl/articles/simd-byte-lookup.html
● can we do better?

http://0x80.pl/articles/simd-byte-lookup.html

Set Matching

The Intel way: pcmpistrm
● packed compare implicity-terminated string,

return mask
● set matching and lots of other features
● conveniently also checks for nul terminators
● probably also brews coffee if you ask nicely

Substring Matching

That means strstr(), memmem()
– really tricky
– most fancy algorithms are optimised for long

strings, but our strings are usually short
– wip

Current Progress
● 2023 rework of the libc string functions for amd64

– paid by The FreeBSD Foundation
– almost all of <string.h>
– for amd64 baseline (SSE2), some for x86-64-v2
– landed for 14.1-RELEASE

● later ports as part of GSoC 2024
– AArch64 by getz@ (acceptance testing in progress)
– riscv64 by strajabot@ (work in progress)

Results (amd64)

m
em

cc
py

m
em

ch
r

m
em

cm
p

m
em

rc
hr

stp
cp

y

stp
nc

py

str
ch

rn
ul

str
cm

p

str
cs

pn

str
lcp

y
str

len

str
nc

m
p

str
rc

hr

str
sp

n

tim
ing

sa
fe

_b
cm

p

tim
ing

sa
fe

_m
em

cm
p

0

2

4

6

8

10

12

14

16

18

20
pre

scalar

SSE

G
B

/s

AMD64 <-> Aarch64

Background

• Project as part of Google Summer of Code 2024

• Port amd64 SIMD libc optimizations to Aarch64

• Another contributor ported to RISC-V
• Several functions already had efficient implementations as part of

the Arm Optimized Routines repository in src/contrib
• Several functions had less efficient implementations.

• Some functions missing

• Write all the string functions!

Most common
instructions are available

PCMPEQB (packed compare for equality bytes)

• Bit scanning instructions (minor variations)
Performed in a GPR after a match is found.

• Bytewise comparisons

CMEQ (compare bitwise equal)

Some require extra fiddling
• For counted string functions we avoid branches by inducing a “fake” match in the match mask

where the buffer ends.
/* end of buffer will occur in next 32 bytes */
.Ltail:
 movdqu (%rdi, %rbx, 1), %xmm0
 pxor %xmm1, %xmm1
 pcmpeqb (%rdi, %rsi, 1), %xmm1
 pcmpeqb (%rdi), %xmm0
 pmovmskb %xmm1, %r8d
 pmovmskb %xmm0, %r9d
 bts %edx, %r8d
 test %r8w, %r8w
 jnz .Lnul_found
 xor $0xffff, %r9d
 jnz .Lmismatch

.Ltail:
 ldr q0, [x8, x11]
 ldr q1, [x8, x10]
 ldr q2, [x8]

 cmeq v1.16b, v1.16b, #0
 cmeq v0.16b, v0.16b, v2.16b

 shrn v1.8b, v1.8h, #4
 shrn v0.8b, v0.8h, #4
 fmov x6, d1
 fmov x5, d0

 mov x13, #0xf
 lsl x4, x2, #2
 lsl x4, x13, x4
 orr x3, x6, x4
 cmp x2, #16
 csel x6, x3, x6, lo

 cbnz x6, .Lnulfound
 cbz x5, .Lmismatch

• When buffer located at end of a page

• No variable shift for SIMD registers
How to be careful not to
step into the void

bic x8, x0, #0xf
 and x9, x0, #0xf
 ldr q0, [x8]
 ldr q1, [x10]
 adrp x14, shift_data
 add x14, x14, :lo12:shift_data

 /* heads may cross page boundary, avoid
unmapped loads */

 tst x5, x3
 b.eq 0f

 ldr q4, [x14, x9]
 tbl v0.16b, {v0.16b}, v4.16b

 .section .rodata
 .p2align 4
shift_data:
 .byte 0, 1, 2, 3, 4, 5, 6, 7
 .byte 8, 9, 10, 11, 12, 13, 14, 15
 .fill 16, 1, -1
 .size shift_data, .-shift_data

movdqa (%rdi), %xmm0
 movdqa (%rsi), %xmm2
 mov $-1, %r8d
 mov $-1, %r9d
 mov %eax, %ecx
 shl %cl, %r8d
 mov %edx, %ecx
 shl %cl, %r9d
 movdqa %xmm0, -40(%rsp)
 movdqa %xmm2, -24(%rsp)
 pcmpeqb %xmm1, %xmm0
 pcmpeqb %xmm1, %xmm2
 pmovmskb %xmm0, %r10d
 pmovmskb %xmm2, %r11d
 test %r8d, %r10d
 lea -40(%rsp), %r8
 cmovz %rdi, %r8
 test %r9d, %r11d
 lea -24(%rsp), %r9
 cmovz %rsi, %r9
 movdqu (%r8, %rax, 1), %xmm0
 movdqu (%r9, %rdx, 1), %xmm4

amd64 Aarch64

Some require
imagination

• Reducing the match from 128 -> 64 bits

• No pmovmskb in Aarch64 but shrn is a good
enough substitute

• Several solutions available

.Lloop:
 ldr q0, [x10, #16]!
 cmeq v0.16b, v0.16b, #0
 shrn v0.8b, v0.8h, #4
 fcmp d0, #0.0
 b.eq .Lloop
 fmov x1, d0
.Ldone:
 sub x0, x10, x0
 rbit x1, x1
 clz x3, x1
 lsr x3, x3, #2
 add x0, x0, x3

1: pxor %xmm1, %xmm1
 pcmpeqb (%rdi), %xmm1
 pmovmskb %xmm1, %eax
 test %eax, %eax
 add $16, %rdi
 jz 1b

 /* match found in loop body */
 tzcnt %eax, %eax
 sub %rsi, %rdi
 lea -16(%rdi, %rax, 1), %rax
 ret

Simple strlen(3)

Notable Alternatives

• UMAXV for the hot path then SHRN on exit
beneficial for long strings

• PCMEQ to turn matches into 0xff, then ORR with 0, 1, ..., 15, and
finally UMINV to find the index of the first mismatch (or -1 if there is
none)
beneficial for very short strings

Some require a lot of imagination

• str(c)spn(3) greatly benefits from the SSE4.2 PCMPISTRI instruction
• Really tricky to port, heavy use of slow tbl instruction
• Current implementation with a lookup table (LUT) for >2 byte sets
• Empty set degrades to strlen(3), 1 char set degrades to strchrnul(3)

Future work

• Implement the Muła / Langdale algorithm for Aarch64
• SVE support D43306
• Add an ARCHLEVEL flag for Aarch64
• Port to AVX2/AVX-512, SVE
• Locale stuff (nasty)
• strstr(3)
• Possible other areas that could benefit from SIMD optimizations

https://reviews.freebsd.org/D43306

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

