

SIMD-enhanced libc string functions
how it's done

Robert Clausecker <fuz@FreeBSD.org>

Common Tasks
● copying strings (strcpy, memcpy, ...)
● finding string length (strlen, strnlen, ...)
● finding characters (strchr, memchr, ...)
● comparing strings (strcmp, memcmp, ...)
● finding substrings (strstr, memmem, ...)
● splitting at delimiters (strspn, strcspn, ...)

Common Tasks
● copying strings (read then write)
● finding string length (read then compare)
● finding characters (read then compare)
● comparing strings (read then compare)
● finding substrings (complicated)
● splitting at delimiters (read then set match)

What does that mean?
read

● char by char until end of string
● one load/compare/conditional branch per character

write
● char by char until end of string
● one write per character

compare
● char by char until match or end of string
● one compare/conditional branch per character

What does that mean?
read

● char by char until end of string
● one load/compare/conditional branch per character (slow)

write
● char by char until end of string
● one write per character (slow)

compare
● char by char until match or end of string
● one compare/conditional branch per character (slow)

Conclusion

Conclusion

Strings suck

What can we do about that?
● Get rid of strings (oof...)
● special-purpose instructions (arch dependent)

– speed varies depending on CPU model
– often only memcpy(), memset() supported

● strange hacks (hmm...)

SIMD

Your new best friend

SIMD
● Single Instruction Multiple Data
● SIMD register: short arrays of numbers
● common lengths: 16, 32, 64 bytes
● same operation on all elements
● but as fast as scalar operations
● SIMD with 16 bytes: 16x scalar performance

Scalar vs. SIMD

+

+

+

+

 A[ ]  C[ ]

 B[ ]

Scalar vs. SIMD

 A[ ]  C[ ]

 B[ ]

+

typical SIMD operations
Arithmetic (integer/FP)
● addition, subtraction, multiplication, ...

Logic
● element-wise comparison, and, or, xor, ...

Data transfer
● read, write, extract masks, ...

... many more

Strings and SIMD

How can this help us with string processing?

Strings and SIMD

How can this help us with string processing?
● load multiple characters at once
● process them simultaneously
● ...
● profit?

Difficulties

Difficulties

Difficulties

Difficulties

Difficulties
● We can easily overshoot the string's end
● For nul-terminated strings, we won't know

where that is until we see the nul byte
● Do we have to iterate char-by-char after all?

What can we do?

What can we do?

String bounds are fictious

What can we do?

String bounds are fictious
Let's overcome them!

Overcoming array bounds
● the computer does not know what an array is
● it only knows that there's memory at some

addresses but not at others

Overcoming array bounds
● the computer does not know what an array is
● it only knows that there's memory at some

addresses but not at others

thus:
● if we don't go too far out of bounds, it'll be fine!
● C doesn't let us, so let's use assembly

How far is too far?
● Memory is organised in pages
● size: arch dependent, usually 4096 bytes
● pages are either accessible entirely or not at all
● there is no more fine-grained memory

protection
– (check out CHERI, it's cool)

How far is too far?
● if at least one byte of a string is on a page, the

whole page is accessible
● aligned accesses never cross page boundaries

thus:
● if we're careful, it might just work!

What does that look like?

What does that look like?

What does that look like?

What does that look like?

What does that look like?

Writing Strings

Can't use the same approach:
● overreads are fine, overwrites are no good

Writing Strings

Can't use the same approach:
● overreads are fine, overwrites are no good

Instead
● write (possibly unaligned) chunks
● last write may overlap previous writes

Writing Strings

Writing Strings

Writing Strings

Writing Strings

Comparing Strings

Can't use the same approach
● strings may have different misalignment
● can't fix this after loading with SSE2

Comparing Strings

Can't use the same approach
● strings may have different misalignment
● can't fix this after loading with SSE2

Instead
● do aligned reads to check for nul bytes
● then unaligned reads to compare characters

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Comparing Strings

Set Matching

strcspn("foo bar", " \t\n");
● matches each char in string against set
● portable approach: Muła / Langdale algorithm

http://0x80.pl/articles/simd-byte-lookup.html
● can we do better?

http://0x80.pl/articles/simd-byte-lookup.html

Set Matching

The Intel way: pcmpistrm
● packed compare implicity-terminated string,

return mask
● set matching and lots of other features
● conveniently also checks for nul terminators
● probably also brews coffee if you ask nicely

Substring Matching

That means strstr(), memmem()
– really tricky
– most fancy algorithms are optimised for long

strings, but our strings are usually short
– wip

Results (amd64)

m
em

cc
py

m
em

ch
r

m
em

cm
p

m
em

rc
hr

stp
cp

y

stp
nc

py

str
ch

rn
ul

str
cm

p

str
cs

pn

str
lcp

y
str

len

str
nc

m
p

str
rc

hr

str
sp

n

tim
ing

sa
fe

_b
cm

p

tim
ing

sa
fe

_m
em

cm
p

0

2

4

6

8

10

12

14

16

18

20

pre scalar

SSE

G
B

/s

AArch64 port
● work by Getz Mikalsen
● complements the ARM Optimized Routines
● some functions redone due to poor perf
● others not present in ARM's codebase
● assembly functions: strcmp(), strspn(), strcspn(),

strlcpy(), strncmp(), memccpy(), strlen(),
timingsafe_bcmp(), timingsafe_memcp()

● new wrappers: strpbrk(), strsep(), strcat(), strncat(),
strlcat(), bcopy(), bzero()

AArch64 difficulties
● no easy way to get syndrome bitmask from

syndrome vector
– amd64: pmovmskb
– aarch64: shrn + fmov to get nibble mask
– other tricks when only zero / nonzero is needed

● no pcmpistrm, Muła/Langdale algorithm instead
● can't count trailing zeroes, only leading zeroes

Current Progress
● 2023 rework of the libc string functions for amd64

– paid by The FreeBSD Foundation
– almost all of <string.h>
– for amd64 baseline (SSE2), some for x86-64-v2
– landed for 14.1-RELEASE

● later ports as part of GSoC 2024
– AArch64 by getz@ (landed for upcoming 15-RELEASE)
– riscv64 by strajabot@ (under acceptance testing)

● Future work: strstr(), CHERI / Morello support, PPC64?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58

