/ero-Aware Pattern Databases with 1-
Bt Compression
for Sliding Tile Puzzles

Robert Clausecker, Alexander Reinefeld
<clausecker@zib.de> <ar@zib.de>

o vation

* sliding tile puzzles are a testbed problem for heuristic search

* currently best known heuristics:
additive pattern databases (APDBs)

°* can we do better?

additive pattern databases

23

1

12

2

20

10

14

13

L&

.

4

15

24

8

D

9 11 8

.

Z

_

a24puzzleandits{2,3,4,7,8,9} APDB

additive pattern databases

6-6-6-6 orig. 6-6-6-6 new

8-8-8 9-8-7 9-9-6

some partitionings of the 24-puzzle 4

?1% 2V3 2?3
s 6% 5 6%
7

h =2 is predicted by the APDB but 2 moves are not sufficient

.

tracking the blank (zero tile)

%

7

.

4

8
5

D

W

13

B P

I\

7

_

(a)

as seen
C) Its possi

as Seen

(b)
a configuration of the 15 puzzle
oy the {1,2,3,4,5,6,7} APDB

ole zero-tile regions A-E
oy the {1,2,3,4,5,6,7} ZPDB

o |9 |O|»

g | O|»|»
Ol | O =

OO0

B O|w|[O

imitatlion. ol B

SUNTEEE =,
O[O0 |0O //////////% ///////////;

the ZPDB does not predict a 2 move solution

space considerations

k APDB size ZPDB size avg max
2 600 608 1.01 2
3 13 800 14472 1.04 2
4 303 600 339048 1.12 3
5 6 375600 7871280 1.23 4
6 127 512 000 181008000 1.42 5
I 2422728000 4066655040 1.68 6
8 43 609 104 000 87358400640 2.00 7
9 741 354 768 000 1759513674240 2.37 8

10 11861 676 288 000 32787 717580800 2.76 10

11 177925144320000 560680553664000 3.15 11

12 2490952020480000 8749801518796800 3.51 13

renresaniafion

1 . % OO% . %/A%A
: 2 GIERRETRY B
ol 7lolo g //%

(m, p, 7) 2027 r=0

representing a ZPDB entry by tile map, permutation,
and zero tile region

ennhanced compression

ZPDBs heuristics are consistent with unit weight
the difference between adjacent h-values is +1
knowing the change of h-value is sufficient for search

[Breyer2010a] represented PDB entries mod 3 in log,3 = 1.6 bits per entry
using this idea.

but we can do better

— if we store entries mod 4, we need 2 bits per entry
— the least bit can be omitted for bipartite spaces

— giving us a representation with 1 bit per entry

10

puilding collections

the general approach:

1. start with a set of known good partitionings
2. sample the h-values of n =10° random puzzles

3. for each partitioning, count how often it was
an h-values sole support

4. remove partitionings from the collection which rarely supported the
maximum h-value

5. add new partitionings to replace them

6. repeat steps 2-5 until no improvements are found

11

puilding collections

A B E F A B E F
C D C D G G
H H
() 2.21% (b) 4.49% () 0.83% d) 1.72%
. _ o
I B E 1 B
L M N
K D C
@)

(e) 5.18% (f) 7.15% (&) 4.77% 12

results

expanded nodes

1E+13

1E+12

1E+11

1E+10

1E+09

1E+08

1E+07

1E+06

M
%\/\\/\/V\/ — orig APDB
= —orig ZPDB
//W\/‘/ — new APDB
- —new ZPDB
/N —coll APDB
/

—coll ZPDB

Korf puzzle # [Korf2002] 13

@aes e

* the zero tile can be tracked explicitly at reasonable memory
and performance costs

* tracking the zero tile explicitly reduces
IDA* nodes by 35%

* such PDBs can be represented with 1 bit per entry

* asmall catalogue of pattern databases additionally reduces
IDA* nodes by 80.2%

on average

14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

