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o vation

* sliding tile puzzles are a testbed problem for heuristic search

* currently best known heuristics:
additive pattern databases (APDBs)

°* can we do better?



additive pattern databases
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additive pattern databases
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some partitionings of the 24-puzzle 4
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h =2 is predicted by the APDB but 2 moves are not sufficient
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tracking the blank (zero tile)
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the ZPDB does not predict a 2 move solution



space considerations

k APDB size ZPDB size avg max
2 600 608 1.01 2
3 13 800 14472 1.04 2
4 303 600 339048 1.12 3
5 6 375600 7871280 1.23 4
6 127 512 000 181008000 1.42 5
I 2422728000 4066655040 1.68 6
8 43 609 104 000 87358400640 2.00 7
9 741 354 768 000 1759513674240 2.37 8

10 11861 676 288 000 32787 717580800 2.76 10

11 177925144320000  560680553664000 3.15 11

12 2490952020480000 8749801518796800 3.51 13



renresaniafion
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representing a ZPDB entry by tile map, permutation,
and zero tile region



ennhanced compression

ZPDBs heuristics are consistent with unit weight
the difference between adjacent h-values is +1
knowing the change of h-value is sufficient for search

[Breyer2010a] represented PDB entries mod 3 in log,3 = 1.6 bits per entry
using this idea.

but we can do better

— if we store entries mod 4, we need 2 bits per entry
— the least bit can be omitted for bipartite spaces

— giving us a representation with 1 bit per entry
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puilding collections

the general approach:

1. start with a set of known good partitionings
2. sample the h-values of n =10° random puzzles

3. for each partitioning, count how often it was
an h-values sole support

4. remove partitionings from the collection which rarely supported the
maximum h-value

5. add new partitionings to replace them

6. repeat steps 2-5 until no improvements are found
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puilding collections
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results

expanded nodes
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@aes e

* the zero tile can be tracked explicitly at reasonable memory
and performance costs

* tracking the zero tile explicitly reduces
IDA* nodes by 35%

* such PDBs can be represented with 1 bit per entry

* asmall catalogue of pattern databases additionally reduces
IDA* nodes by 80.2%

on average
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